357 research outputs found

    Matching Theory for Backhaul Management in Small Cell Networks with mmWave Capabilities

    Full text link
    Designing cost-effective and scalable backhaul solutions is one of the main challenges for emerging wireless small cell networks (SCNs). In this regard, millimeter wave (mmW) communication technologies have recently emerged as an attractive solution to realize the vision of a high-speed and reliable wireless small cell backhaul network (SCBN). In this paper, a novel approach is proposed for managing the spectral resources of a heterogeneous SCBN that can exploit simultaneously mmW and conventional frequency bands via carrier aggregation. In particular, a new SCBN model is proposed in which small cell base stations (SCBSs) equipped with broadband fiber backhaul allocate their frequency resources to SCBSs with wireless backhaul, by using aggregated bands. One unique feature of the studied model is that it jointly accounts for both wireless channel characteristics and economic factors during resource allocation. The problem is then formulated as a one-to-many matching game and a distributed algorithm is proposed to find a stable outcome of the game. The convergence of the algorithm is proven and the properties of the resulting matching are studied. Simulation results show that under the constraints of wireless backhauling, the proposed approach achieves substantial performance gains, reaching up to 30%30 \% compared to a conventional best-effort approach.Comment: In Proc. of the IEEE International Conference on Communications (ICC), Mobile and Wireless Networks Symposium, London, UK, June 201

    Energy Efficient User Association and Power Allocation in Millimeter Wave Based Ultra Dense Networks with Energy Harvesting Base Stations

    Full text link
    Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem is modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and the effectiveness of the proposed scheme compared with existing methods is verified by simulations.Comment: to appear, IEEE Journal on Selected Areas in Communications, 201

    User Association in 5G Networks: A Survey and an Outlook

    Get PDF
    26 pages; accepted to appear in IEEE Communications Surveys and Tutorial

    Network Optimisation for Robotic Aerial Base Stations

    Get PDF
    One attractive application of unmanned aerial vehicles (UAVs) is to provide wireless coverage when acting as aerial base stations (ABSs). Compared to terrestrial small cells, ABSs have the benefit of flexible deployment, controllable mobility, and dominant line-of-sight channels, so they are expected to play a significant role in next-generation cellular networks. However, introducing this novel non-terrestrial communication device would also bring new challenges, such as requiring different evaluation criteria and being restricted by unexpected resource constraints. With this in mind, this thesis mainly focuses on the network optimisation problems of ABS-assisted networks.Specifically, we first investigate two contradictory metrics, i.e., the information freshness and energy consumption, when an ABS is employed to collect data from ground terminals. A novel multi-return-allowed serving mode is proposed to explore the Pareto optimal trade-off between these two metrics. Secondly, to overcome the functional endurance issue of conventional ABSs, we propose a novel prototype named robotic aerial base stations (RABSs) with grasping capabilities, which can attach autonomously in lampposts or land on other tall urban landforms to serve as small cells with prolonged endurance. By employing this novel ABS prototype, we first study the optimal deployment and operation strategy for RABSs when the mobile traffic demand shows heterogeneity in both spatial and temporal domains. Afterwards, to further explore the use of RABSs in the upcoming 6G era, we investigate two novel application scenarios, that is, an RABS-assisted integrated sensing and communication (ISAC) system and an RABS-aided millimetre-wave (mmWave) backhaul network.The proposed scenarios are formulated as various non-convex problems. By analyzing their constructions, we propose a variety of algorithms to solve them in a reasonable time. A wide set of simulation results shows that the proposed novel prototypes and serving schemes have immense potential in future cellular networks.<br/
    • …
    corecore