23 research outputs found

    Improved image recognition via synthetic plants using 3D modelling with stochastic variations

    Get PDF
    This research extends previous plant modelling using L-systems by means of a novel arrangement comprising synthetic plants and a refined global wheat dataset in combination with a synthetic inference application. The study demonstrates an application with direct recognition of real plant stereotypes, and augmentation via a plant-wide stochastic growth variation structure. The study showed that the automatic annotation and counting of wheat heads using the Global Wheat dataset images provides a time and cost saving over traditional manual approaches and neural networks. This study introduces a novel synthetic inference application using a plant-wide stochastic variation system, resulting in improved structural dataset hierarchy. The research demonstrates a significantly improved L-system that can more effectively and more accurately define and distinguish wheat crop characteristics

    Hardness of longest common subsequence for sequences with bounded run-lengths

    Get PDF
    International audienceThe longest common subsequence (LCS) problem is a classic and well-studied problem in computer science with extensive applications in diverse areas ranging from spelling error corrections to molecular biology. This paper focuses on LCS for fixed alphabet size and fixed run-lengths (i.e., maximum number of consecutive occurrences of the same symbol). We show that LCS is NP-complete even when restricted to (i) alphabets of size 3 and run-length at most 1, and (ii) alphabets of size 2 and run-length at most 2 (both results are tight). For the latter case, we show that the problem is approximable within ratio 3/5

    Threesomes, Degenerates, and Love Triangles

    Full text link
    The 3SUM problem is to decide, given a set of nn real numbers, whether any three sum to zero. It is widely conjectured that a trivial O(n2)O(n^2)-time algorithm is optimal and over the years the consequences of this conjecture have been revealed. This 3SUM conjecture implies Ω(n2)\Omega(n^2) lower bounds on numerous problems in computational geometry and a variant of the conjecture implies strong lower bounds on triangle enumeration, dynamic graph algorithms, and string matching data structures. In this paper we refute the 3SUM conjecture. We prove that the decision tree complexity of 3SUM is O(n3/2logn)O(n^{3/2}\sqrt{\log n}) and give two subquadratic 3SUM algorithms, a deterministic one running in O(n2/(logn/loglogn)2/3)O(n^2 / (\log n/\log\log n)^{2/3}) time and a randomized one running in O(n2(loglogn)2/logn)O(n^2 (\log\log n)^2 / \log n) time with high probability. Our results lead directly to improved bounds for kk-variate linear degeneracy testing for all odd k3k\ge 3. The problem is to decide, given a linear function f(x1,,xk)=α0+1ikαixif(x_1,\ldots,x_k) = \alpha_0 + \sum_{1\le i\le k} \alpha_i x_i and a set ARA \subset \mathbb{R}, whether 0f(Ak)0\in f(A^k). We show the decision tree complexity of this problem is O(nk/2logn)O(n^{k/2}\sqrt{\log n}). Finally, we give a subcubic algorithm for a generalization of the (min,+)(\min,+)-product over real-valued matrices and apply it to the problem of finding zero-weight triangles in weighted graphs. We give a depth-O(n5/2logn)O(n^{5/2}\sqrt{\log n}) decision tree for this problem, as well as an algorithm running in time O(n3(loglogn)2/logn)O(n^3 (\log\log n)^2/\log n)

    Improved image recognition via Synthetic Plants using 3D Modelling with Stochastic Variations

    Get PDF
    This research extends previous plant modelling using L-systems by means of a novel arrangement comprising synthetic plants and a refined global wheat dataset in combination with a synthetic inference application. The study demonstrates an application with direct recognition of real plant stereotypes, and augmentation via a plant-wide stochastic growth variation structure. The study showed that the automatic annotation and counting of wheat heads using the Global Wheat dataset images provides a time and cost saving over traditional manual approaches and neural networks. This study introduces a novel synthetic inference application using a plant-wide stochastic variation system, resulting in improved structural dataset hierarchy. The research demonstrates a significantly improved L-system that can more effectively and more accurately define and distinguish wheat crop characteristics

    Data Structures Meet Cryptography: 3SUM with Preprocessing

    Full text link
    This paper shows several connections between data structure problems and cryptography against preprocessing attacks. Our results span data structure upper bounds, cryptographic applications, and data structure lower bounds, as summarized next. First, we apply Fiat--Naor inversion, a technique with cryptographic origins, to obtain a data structure upper bound. In particular, our technique yields a suite of algorithms with space SS and (online) time TT for a preprocessing version of the NN-input 3SUM problem where S3T=O~(N6)S^3\cdot T = \widetilde{O}(N^6). This disproves a strong conjecture (Goldstein et al., WADS 2017) that there is no data structure that solves this problem for S=N2δS=N^{2-\delta} and T=N1δT = N^{1-\delta} for any constant δ>0\delta>0. Secondly, we show equivalence between lower bounds for a broad class of (static) data structure problems and one-way functions in the random oracle model that resist a very strong form of preprocessing attack. Concretely, given a random function F:[N][N]F: [N] \to [N] (accessed as an oracle) we show how to compile it into a function GF:[N2][N2]G^F: [N^2] \to [N^2] which resists SS-bit preprocessing attacks that run in query time TT where ST=O(N2ε)ST=O(N^{2-\varepsilon}) (assuming a corresponding data structure lower bound on 3SUM). In contrast, a classical result of Hellman tells us that FF itself can be more easily inverted, say with N2/3N^{2/3}-bit preprocessing in N2/3N^{2/3} time. We also show that much stronger lower bounds follow from the hardness of kSUM. Our results can be equivalently interpreted as security against adversaries that are very non-uniform, or have large auxiliary input, or as security in the face of a powerfully backdoored random oracle. Thirdly, we give non-adaptive lower bounds for 3SUM and a range of geometric problems which match the best known lower bounds for static data structure problems

    Re-Use Dynamic Programming for Sequence Alignment: An Algorithmic Toolkit

    Get PDF
    International audienceThe problem of comparing two sequences S and T to determine their similarity is one of the fundamental problems in pattern matching. In this manuscript we will be primarily concerned with sequences as our objects and with various string comparison metrics. Our goal is to survey a methodology for utilizing repetitions in sequences in order to speed up the comparison process. Within this framework we consider various methods of parsing the sequences in order to frame their repetitions, and present a toolkit of various solutions whose time complexity depends both on the chosen parsing method as well as on the string-comparison metric used for the alignment
    corecore