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Improved image recognition via Synthetic Plants using 3D 
Modelling with Stochastic Variations 

Chris C. Napier1*, David M. Cook1, Leisa Armstrong1 and Dean Diepeveen1,2 

1School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Australia 
2Department of Primary Industry Resource Development, South Perth, Australia 

Abstract. This research extends previous plant modelling using L-systems by means of a novel 

arrangement comprising synthetic plants and a refined global wheat dataset in combination with a synthetic 

inference application. The study demonstrates an application with direct recognition of real plant 

stereotypes, and augmentation via a plant-wide stochastic growth variation structure. The study showed that 

the automatic annotation and counting of wheat heads using the Global Wheat dataset images provides a 

time and cost saving over traditional manual approaches and neural networks. This study introduces a novel 

synthetic inference application using a plant-wide stochastic variation system, resulting in improved 

structural dataset hierarchy. The research demonstrates a significantly improved L-system that can more 

effectively and more accurately define and distinguish wheat crop characteristics. Keywords: Synthetic 

plants, Stochastic modelling, L-systems, Global Wheat, Inference   

1 Introduction 

In 2021 the Global Wheat Challenge (GWC) had a 

profound impact upon the expansion and extension of 

the Global Wheat Head Detection (GWHD) dataset, 

drawing renewed worldwide interest from the computer 

vision and agricultural science communities [1].  The 

global focus on improved quality and reduced cost of 

food production is driven by a rapidly increasing world 

population [2], [3], [4]. 

The ongoing pursuit of increased efficiencies in food 

production has resulted in the rapid growth of research 

of deep learning approaches towards new discoveries in 

crops adaptability to suit globally disparate agronomic 

and climatic conditions [5]. Whilst most of the work in 

this area has centred on using traditional deep learning 

approaches and large datasets to establish ground truth, 

this study demonstrates significant advantages in the 

application of alternative approaches to deep learning 

and crop modelling using the APSIM model [6], [7] and 

[8], or through L-systems [9], [10], and [11].  

1.1 Background and Literature 

An L-system is a set of rules and parameters which 

define plant growth, structure, and appearance [12]. This 

research proposes an extension to an existing L-system 

(L-NAP) with an improved wheat crop dataset; to add 

realistic stochastic growth variations; and to introduce a 

novel and important application in synthetic inference 
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which will directly recognize wheat heads, and wheat 

characteristics under changing agronomic conditions.  

L-systems typically evolve from a mathematical theory 

of plant and cellular growth [12]. They are based upon 

the Backus-Naur production rules and allow for 

extensive application of plant-based synthetic imagery 

[13], [14], [15]. 

L-systems are particularly useful in the ability to 

recognize and measure real wheat plants. Using Python 

as a language driver, L-system frameworks can be 

created to form algorithms to characterize and recognize 

features on wheat heads [16].  They are regularly 

described by means of small text-based explanations 

and imageries that require relatively small amounts of 

storage compared to real imagery [17]. The recognition 

success is dependent on pixels. An individual person’s 

eyes respond to many light intensity levels. L-NAP must 

be able to “see” at low resolution and low scale. This 

increased level of recognition is made possible by 

refining the dataset to incorporate the range of scale and 

resolution contrasts.  

The aim in synthetic inference is to achieve unabridged 

corollaries that create a higher level of reasoning for the 

interpretation of the observed images. The dataset will 

“carry” images at all growth scales, based on a wide 

range of grain-counts, which is not the same as image 

scaling. This is the necessary approach to see smaller 

images and still accurately recognize plant parts, since 
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smaller images are often caused by lower grain-count 

[18]. 

 This is indeed what stochastic variation means, and it 

reflects real plant growth variations. This project will 

push the research envelope to use depth and stereo 

cameras of higher resolutions in line with improving 

miniature camera technology. In this sense the evolution 

of these stochastic augmentations grows in line with 

advances and upgrades in camera and image capture 

technologies. 

2 Validation of Synthetic Images using 
the Global Wheat Head Detection 
(GWHD) dataset. 

The Global Wheat Head Detection (GWHD) dataset of 

2021 [1] provides renewed confidence in the 

expectation of improved recognition. In this study, a real 

wheat neural network was trained on a total of 677 

images of the second domain of the GWHD. There were 

40 field images in the second domain of around 25 

wheat heads each. From these wheat heads two-thirds 

were used for training whilst one-third were used for 

validation (See Figure 1.). 

This second domain was chosen for its higher quality, in 

combination with fewer images. It was used to validate 

the initial synthetic images and was designed to 

resemble that domain by means of accurate L-system 

parameter choices, and the stochastic variations of those 

parameters. 

Some larger variations resulted in lower matching 

scores, while modest variations on the upper images 

gave higher validation. Here there is an advantage in the 

use of synthetic data, where this test indicated the best 

choice of L-system parameters for this domain. These 

choices in turn allow “domain adaptation” [19], [20] by 

simple parameter adjustments. These adjustments are 

guided in a similar test using real data, even if a limited 

amount, of that domain [21]. This typically 

demonstrates accurate results even in situations where 

the real data used to steer the recognition process is 

drawn from a limited number of real wheat head images. 

2.1 Recognition of Awns 

One example of this domain adaptation is in terms of 

elements such as the length of the awns on the wheat 

heads. These awns resemble long thin spikes and are 

predominant on the image set in Figure 2, which can be 

longer for other domains.  Wheat heads represent a 

critical source of information about the quality of a 

wheat crop. The accurate recognition of awns is 

especially beneficial in determining the health of a crop 

since awns provide rich data about the health, maturity 

stage, and size of the associated wheat heads. 

 

 

Fig. 1. Validated synthetic wheat with a neural network 

trained on the GWHD dataset, showing network object 

recognition errors on overlapping synthetic wheat head 

images. (Green box on right side of image). 

 

 

Fig. 2. Validated synthetic wheat with a neural network 

trained on the GWHD dataset, showing clear recognition of 

Awns. (Blue box on left side of image). 

3 L-NAP System Approach 

The previous work of Napier et al (2023) described L-

NAP as an application that accurately represented the 

hierarchy and growth of wheat heads by using synthetic 

models [16].  

 

L-NAP fully separates an L-system algorithm, 

describing a synthetic plant, into two files. The first file 

defines the L-system rules relating to the structure and 

relation of the plant parts. The second file defines the L-

system parameters, relating to sizes, angles, counts, 

textures, and plant growth. L-NAP communicates these 

varying parameters as necessary to the rules when the 

plant is grown, mimicking natural plant processes. The 

parameter calculations can be complex, but by this 

separation, they are contained within parameter 

modules. 

 

 

Table 1. Steps in L-NAP towards dataset creation, 

application, recognition, and annotation of real plants.  
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L-NAP dataset steps 

Step A 
Creation of Drawing Commands in 

an L-system algorithm 
 

Step B 
Create 3D models from commands 

in Blender 
 

Step C Create plant camera views of models  

Step D Create synthetic dataset  

Step E 
Apply dataset to recognise real 

images 
 

 

The L-NAP system has five steps, from A to E, 

which in turn create drawing commands from an L-

system description; create 3D models from these 

commands; create plant views of the models; create a 

synthetic dataset from the views; and finally apply the 

dataset to recognize and annotate real plants (Table 1). 

 

The method of taking this synthetic dataset approach 

means that the data processing complexity is handled 

during the dataset creation by the data pipelines, and by 

the dataset API access functions. The approach 

demonstrates its completion by the synthetic inference 

application which employs the synthetic dataset to 

accurately locate plant instances in real pasture images.  

 

L_NAP has been extended to cover the L-system 

classes defined in the book “The Algorithmic Beauty of 

Plants” [12], and to introduce plant-wide stochastic 

variations, as show in the trees below. Figure 3 

demonstrates the use of the L-NAP algorithm (below) 

which creates the trees by means of a python program.  

 

Fig. 3. A full tree (on the left), and then the same tree re-

grown (on the right) with only 80% branch growth, 

controlled by one L-NAP parameter. 

 
The complete L-NAP rules which were used to 

grow the trees in Figure 3 are defined in this Python 

program: 

 

from L_NAP import * 
Tree = L_NAP() 
Branch = Tree(Draw, [Turn_left, Branch], 
              Draw, [Turn_right, Branch],  
              Turn_left, Branch) 
Axiom = Tree(Branch) 
while Tree.next_stage(Axiom): 
    Tree.grow() 
 

The separate parameters file gives the number of growth 

stages (7), the branch length (1.0), width (0.1), and 

scaling per stage (0.5), the branch turning angle (20 

deg.), and the branch growth probability (1.0 or 0.8), and 

these are applied to each grown branch (See Figure 3). 

3.1 Modelling using Light Absorption 

An important feature of the L-NAP framework is that 

since it is an L-system defined in a Python class, it may 

be extended with extra functionality, to create a new L-

system framework of a new name, which for example, 

could have math functions, which depend on external 

light conditions, to guide the tree growth. 

 

One such extension relates to the work of Renton et al, 

(2005) that considers modelling in relation to light [22]. 

This study concludes that new tree growth of (mountain 

birch) trees can be determined solely by absorbed light. 

Such a system can become an extension of the L-NAP 

framework.   

 

In a similar fashion the L-PEACH framework [23], 

which has source-sink interaction functionality and is 

described as complex, could benefit from L-NAP. Such 

a framework could be further be extended to other tree 

types.  The study on MAppleT [24] also constitutes a 

useful tool for simulating apple tree development in 

terms of the interaction with gravity.  This tool 

demonstrates a strong alignment with the functionality 

of the L-NAP framework in terms of integration.  The 

reflection, absorption, and transmission of light are 

considered to underpin the three principal steps that a 

light ray goes through upon arriving at the surface of a 

leaf [25]. 

4 The Synthetic Inference Approach 

 

Synthetic Inference is a term introduced in this 

research to describe its novel plant recognition and 

measurement approach. It differs from traditional 

approaches in that synthetic inference does not require 

neural network training. Instead, a synthetic dataset is 

created as distinct parts preserving the structured 

knowledge of synthetic plant data and metadata in 2D, 

2D + depth, and 3D representations.  

 

Tu [26] (2020) and Li [27] discuss neural network 

image depth and stereo processing. This structured 

knowledge maintains the form and hierarchical structure 

of the plant parts and can be directly and efficiently 

accessed in synthetic inference applications.  The 

dataset structure combines multiple views, representing 
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positions and orientations of each 3D model, allowing 

the concept of the matching to individual plant models, 

and the user interface allows specified variations of 

these models in the recognition and measurement 

process. This contrasts with the “pooling” operations 

performed during neural network training, where 

individual details are assimilated and combined into a 

complex but problematic representation, as described by 

Hinton [28].  

 

A dataset contains separate sections for different 

regions and different plant varieties, whereas there exist 

a common set of procedures to store and retrieve the 

data, and particular combinations of data and metadata, 

and orientations which match features in a real plant 

image. For example, to perform a grain-count 

measurement in synthetic inference, a set of wheat head 

images with the same orientation but with increasing 

grain-count can be requested from the dataset, to 

achieve a better recognition of a given real plant image. 

A test system was developed with twelve rotations of 

each view. This is effective in terms of improved image 

recognition. 

5 A Synthetic Inference Application 

An important synthetic Inference application was 

developed to harness the synthetic models, image data, 

and metadata and its hierarchal structure which is 

present on the created wheat head dataset.  

 

Fig. 4. A Global Wheat dataset image, annotated by synthetic 

inference, indicating the best synthetic model numbers and 

matching IoU scores. 

The dataset has 100, stochastically varied 3D models. 

Further, the dataset had 25 2D views of each model. The 

synthetic inference method directly locates wheat heads 

on Global Wheat pasture images, using this dataset with 

high visibility and clarity (See Figure 4). 

It is important to discuss the significance of IoU scores 

using L-systems for synthetic images [19], [29], [30] 

and [31]. The Intersection over Union (IoU) is a standard 

object recognition metric. It is the intersection area 

divided by the union area of two objects, where area 

relates to 2D image pixels. Intersection is the common 

area of overlap, and the union area is the sum of both 

object areas less the common area, thus: 

IoU = I / (A1 + A2 - I), 
where the two objects have areas A1 and A2 
and their intersection area is I. 

 
The highest IoU score indicates the best matching 

synthetic wheat head at each real wheat head position. 

As a separate measure of overall success in matching a 

wheat field: Currently, 17 of the 23 wheat heads, are 

recognised on this one image, giving a score of 17/23 => 

74%.  This is preliminary since many refinements must 

be performed. 

 

This synthetic inference application uses direct pixel 

comparisons between synthetic and real wheat image 

data. This is a novel approach to demonstrating an 

accurate method that saves time training neural 

networks.  

6 The L-NAP Dataset 

 

The L-NAP dataset gathers the plant data and makes 

it available to applications in a structured and relational 

manner. It follows the standard Detectron2 formalism 

[32], which uses a JSON file [33] describing the dataset 

contents. The data format is based on Microsoft COCO 

[34].  In the case of the Global wheat head recognition 

project, the dataset was stored in terms of its directory 

configuration (Table 2). 

 

Table 2. Directory Contents 

Meta 

Metadata of synthetic wheat heads 

annotated in JSON files, referring to 

View and Model files. 

Model 
3D models, held in object and material 

files, referenced by JSON files 

View 
2D image view files, referenced by a 

JSON file 

 

Each metadata JSON file describes a synthetic wheat 

head or several related wheat-heads, located on named 

2D synthetic view files, as views of 3D models in a 

Wavefront format [35]. The wheat heads are described 

to be within given bounding box(es) on the view file, 

and within bit-mask segmentation(s), each defined by a 

list of Run-List-Encodings [36].  

 

Each wheat head has categories defining its grain-

count, orientation, scale, and partial-image class, and 

other possible classifications. When there is more than 

one wheat head defined on a JSON file, then the wheat 

heads are closely related, such as several orientations of 

a single view, or a range of wheat heads with increasing 

grain-count at the same orientation. 
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This JSON file is used in the synthetic inference 

application to access the synthetic wheat pixel data and 

to create relational information, which guides the 

application. The Model directory holds the original 2D 

wheat head models. It will be used in future applications 

to create digital representations of real pasture scenes. 

The View directory contains the pixel data named in the 

JSON file.  

 

Note that the plant recognition system from 

Pl@ntNet.at [37] uses an image dataset that has been 

annotated by expert botanists. This system has achieved 

88% plant recognition accuracy. This level is much 

higher compared to the lower scores for neural network-

based mobile phone plant recognition systems, which 

generally have poorly annotated data. An algorithmic 

ranking of viable plant candidates was a key feature of 

their dataset. 

 

7 Conclusion 

This research demonstrates the advantages of using 

synthetic plants and 3D modelling to accurately 

recognize real plants by means of an L-systems 

approach. The study shows the efficacy in two key areas. 

Firstly, this paper shows the benefits of stochastic 

variations and the ability to gain a more accurate system 

of recognition. The second benefit is the ability to save 

time because this approach allows for synthetic mapping 

without the need to further train neural networks. 

 

An innovative synthetic inference application has 

been successful in the accurate recognition of selected 

wheat head varieties of the Global Wheat dataset of 

2021 [2]. This application is an alternative to the neural 

network application. Synthetic inference will be 

extended with higher accuracy to cover multiple wheat 

head varieties and multiple plant types. The stochastic 

variation method will be extended to allow the creation 

of increasingly realistic plants.  

 

Research discovered that a smartphone plant 

recognition system from Pl@ntNet.at uses a dataset of 

images, categorised by botanists, to achieve 88% plant 

recognition [37] compared to much lower scores for 

neural network-based mobile phone plant recognition 

systems, which generally have poorly annotated data. 

An algorithmic ranking of possible plant candidates was 

a key feature. If we note that in the Global Wheat 

Competition of 2021 the best score was 84% [1], then 

we can confidently suggest that this type of L-systems 

approach will allow for image recognition training on a 

significantly smaller set of synthetic images.  In future, 

the dataset must be refined, and experiments performed 

to create the best dataset interface, and the data for the 

best object recognition. 

 

It is one task to find the best L-systems rules and 

parameters for a given plant, and this has been achieved. 

It is a separate task to introduce a suitable range of 

parameter variation within the dataset. To achieve this 

improvement requires that successful image matching is 

recorded and fed back to the L-NAP framework to allow 

it to adapt its L-system parameters and their variational 

ranges to a new domain or to a related plant type. Such 

a self-adaption would be a milestone in L-NAP 

development [38]. 

 

The use of stochastic variations is an important 

improvement in the ongoing research endeavour to 

create image recognition systems that can be trained on 

nature-based datasets without the need for enormously 

large numbers of images. They allow for a more robust 

set of validations that are helpful in terms of recognition 

in critical areas such as wheat heads. Stochastic 

variations represent important inclusions to the 

development of L-systems because they permit and 

develop greater flexibility and realism in modelling 

complex structures. The benefits of these inclusions are 

essential to food security in terms of resilience given the 

climatic challenges that are influencing global staples 

such as wheat. 

 

The stochastic variations explored in this paper 

demonstrate the ability to save significant amounts of 

time. The 18 domains of wheat could easily be matched 

using this stochastic method. Having mapped one 

domain, this system would allow for the same 

application to map the other 17 global wheat domains. 

A further benefit is the significant value of recognising 

awns. Such an approach allows for a system of 

recognition using synthetic wheat and generating 

reliable mapping without the need to spend additional 

valuable time in individual domains.   

 

7.1  Limitations and Future research 

One of the limitations is the use of mono recognition of 

images. A future direction for this recognition approach 

will be to use a stereo image approach to determine a 

sharper image in terms of the quest for greater detail in 

wheat head characteristics. This is an important 

consideration given that synthetic data is highly 

applicable to stereo imagery, providing synthetic data 

that can be generated as 3D models. 

 

This approach is transferrable to recognition in other 

plants. A new approach is being considered in terms of 

coffee to investigate the benefits of an L-systems 

approach for the classification and grading of coffee 

beans using synthetic modelling.  
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