5 research outputs found

    Closed nominal rewriting and efficiently computable nominal algebra equality

    Full text link
    We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete procedure to check nominal algebra equality. This subclass includes specifications of the lambda-calculus and first-order logic.Comment: In Proceedings LFMTP 2010, arXiv:1009.218

    Algorithms for Extended Alpha-Equivalence and Complexity

    Get PDF
    Equality of expressions in lambda-calculi, higher-order programming languages, higher-order programming calculi and process calculi is defined as alpha-equivalence. Permutability of bindings in let-constructs and structural congruence axioms extend alpha-equivalence. We analyse these extended alpha-equivalences and show that there are calculi with polynomial time algorithms, that a multiple-binding “let ” may make alpha-equivalence as hard as finding graph-isomorphisms, and that the replication operator in the pi-calculus may lead to an EXPSPACE-hard alpha-equivalence problem

    From nominal to higher-order rewriting and back again

    Full text link
    We present a translation function from nominal rewriting systems (NRSs) to combinatory reduction systems (CRSs), transforming closed nominal rules and ground nominal terms to CRSs rules and terms, respectively, while preserving the rewriting relation. We also provide a reduction-preserving translation in the other direction, from CRSs to NRSs, improving over a previously defined translation. These tools, together with existing translations between CRSs and other higher-order rewriting formalisms, open up the path for a transfer of results between higher-order and nominal rewriting. In particular, techniques and properties of the rewriting relation, such as termination, can be exported from one formalism to the other.Comment: 41 pages, journa

    Matching and alpha-equivalence check for nominal terms

    Get PDF
    AbstractNominal terms generalise first-order terms by including abstraction and name swapping constructs. α-equivalence can be easily axiomatised using name swappings and a freshness relation, which makes the nominal approach well adapted to the specification of systems that involve binders. Nominal matching is matching modulo α-equivalence and has applications in programming languages, rewriting, and theorem proving. In this paper, we describe efficient algorithms to check the validity of equations involving binders and to solve matching problems modulo α-equivalence, using the nominal approach
    corecore