2 research outputs found

    Matching and Unification for the Object-Oriented Symbolic Computation System AlgBench

    No full text
    . Term matching has become one of the most important primitive operations for symbolic computation. This paper describes the extension of the object-oriented symbolic computation system AlgBench with pattern matching and unification facilities. The various pattern objects are organized in subclasses of the class of the composite expressions. This leads to a clear design and to a distributed implementation of the pattern matcher in the subclasses. New pattern object classes can consequently be added easily to the system. Huet's and our simple mark and retract algorithm for standard unification as well as Stickel's algorithm for associative commutative unification have been implemented in an objectoriented style. Unifiers are selected at runtime. We extend Mathematica's type-constrained pattern matching by taking into account inheritance information from a user-defined hierarchy of object types. The argument unification is basically instance variable unification. The improvement of the ..

    Core foundations, algorithms, and language design for symbolic computation in physics

    Get PDF
    This thesis presents three contributions to the field of symbolic computation, followed by their application to symbolic physics computations. The first contribution is to interfacing systems. The Notation package, which is developed in this thesis, allows the entry and the creation of advanced notations in the Mathematica symbolic computation system. In particular, a complete and functioning notation for both Dirac's BraKet notation as well as a full tensorial notation, are given herein. The second part of the thesis introduces a prototype based rule inheritance language paradigm that is applicable to certain advanced pattern matching rewrite rule language models. In particular, an implementation is presented for Mathematica. After detailing this language extension, it is adopted throughout the rest of the thesis. Finally, the third major contribution is a highly efficient algorithm to canonicalize tensorial expressions. By an innovative technique this algorithm avoids the dummy index relabeling problem. Further algorithmic optimizations are then presented. The complete algorithm handles linear symmetries such as the Bianchi identities. It also fully accommodates partial derivatives as well as mixed index classes. These advances in language and notations are extensively demonstrated on problems in quantum mechanics, angular momentum, general relativity, and quasi-spin. It is shown that the developments in this thesis lead to an extremely flexible, extensible, and powerful working environment for the expression and ensuing calculation of symbolic physics computations
    corecore