237,688 research outputs found

    High-Quality Facial Photo-Sketch Synthesis Using Multi-Adversarial Networks

    Full text link
    Synthesizing face sketches from real photos and its inverse have many applications. However, photo/sketch synthesis remains a challenging problem due to the fact that photo and sketch have different characteristics. In this work, we consider this task as an image-to-image translation problem and explore the recently popular generative models (GANs) to generate high-quality realistic photos from sketches and sketches from photos. Recent GAN-based methods have shown promising results on image-to-image translation problems and photo-to-sketch synthesis in particular, however, they are known to have limited abilities in generating high-resolution realistic images. To this end, we propose a novel synthesis framework called Photo-Sketch Synthesis using Multi-Adversarial Networks, (PS2-MAN) that iteratively generates low resolution to high resolution images in an adversarial way. The hidden layers of the generator are supervised to first generate lower resolution images followed by implicit refinement in the network to generate higher resolution images. Furthermore, since photo-sketch synthesis is a coupled/paired translation problem, we leverage the pair information using CycleGAN framework. Both Image Quality Assessment (IQA) and Photo-Sketch Matching experiments are conducted to demonstrate the superior performance of our framework in comparison to existing state-of-the-art solutions. Code available at: https://github.com/lidan1/PhotoSketchMAN.Comment: Accepted by 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)(Oral

    Depth from Monocular Images using a Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture

    Get PDF
    Deep neural networks are applied to a wide range of problems in recent years. In this work, Convolutional Neural Network (CNN) is applied to the problem of determining the depth from a single camera image (monocular depth). Eight different networks are designed to perform depth estimation, each of them suitable for a feature level. Networks with different pooling sizes determine different feature levels. After designing a set of networks, these models may be combined into a single network topology using graph optimization techniques. This "Semi Parallel Deep Neural Network (SPDNN)" eliminates duplicated common network layers, and can be further optimized by retraining to achieve an improved model compared to the individual topologies. In this study, four SPDNN models are trained and have been evaluated at 2 stages on the KITTI dataset. The ground truth images in the first part of the experiment are provided by the benchmark, and for the second part, the ground truth images are the depth map results from applying a state-of-the-art stereo matching method. The results of this evaluation demonstrate that using post-processing techniques to refine the target of the network increases the accuracy of depth estimation on individual mono images. The second evaluation shows that using segmentation data alongside the original data as the input can improve the depth estimation results to a point where performance is comparable with stereo depth estimation. The computational time is also discussed in this study.Comment: 44 pages, 25 figure

    Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds

    Full text link
    Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with plain multi layer perceptrons (MLP) applied to image patches. We will show that by training on large image databases we are able to outperform the current state-of-the-art image denoising methods. In addition, our method achieves results that are superior to one type of theoretical bound and goes a large way toward closing the gap with a second type of theoretical bound. Our approach is easily adapted to less extensively studied types of noise, such as mixed Poisson-Gaussian noise, JPEG artifacts, salt-and-pepper noise and noise resembling stripes, for which we achieve excellent results as well. We will show that combining a block-matching procedure with MLPs can further improve the results on certain images. In a second paper, we detail the training trade-offs and the inner mechanisms of our MLPs

    SLIM : Scalable Linkage of Mobility Data

    Get PDF
    We present a scalable solution to link entities across mobility datasets using their spatio-temporal information. This is a fundamental problem in many applications such as linking user identities for security, understanding privacy limitations of location based services, or producing a unified dataset from multiple sources for urban planning. Such integrated datasets are also essential for service providers to optimise their services and improve business intelligence. In this paper, we first propose a mobility based representation and similarity computation for entities. An efficient matching process is then developed to identify the final linked pairs, with an automated mechanism to decide when to stop the linkage. We scale the process with a locality-sensitive hashing (LSH) based approach that significantly reduces candidate pairs for matching. To realize the effectiveness and efficiency of our techniques in practice, we introduce an algorithm called SLIM. In the experimental evaluation, SLIM outperforms the two existing state-of-the-art approaches in terms of precision and recall. Moreover, the LSH-based approach brings two to four orders of magnitude speedup
    corecore