8,177 research outputs found

    Cooperative Wideband Spectrum Sensing Based on Joint Sparsity

    Get PDF
    COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY By Ghazaleh Jowkar, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically

    Primary User Emulation Attacks: A Detection Technique Based on Kalman Filter

    Full text link
    Cognitive radio technology addresses the problem of spectrum scarcity by allowing secondary users to use the vacant spectrum bands without causing interference to the primary users. However, several attacks could disturb the normal functioning of the cognitive radio network. Primary user emulation attacks are one of the most severe attacks in which a malicious user emulates the primary user signal characteristics to either prevent other legitimate secondary users from accessing the idle channels or causing harmful interference to the primary users. There are several proposed approaches to detect the primary user emulation attackers. However, most of these techniques assume that the primary user location is fixed, which does not make them valid when the primary user is mobile. In this paper, we propose a new approach based on the Kalman filter framework for detecting the primary user emulation attacks with a non-stationary primary user. Several experiments have been conducted and the advantages of the proposed approach are demonstrated through the simulation results.Comment: 14 pages, 9 figure

    Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance Uncertainty

    Full text link
    This paper proposes novel spectrum sensing algorithm, and examines the sensing throughput tradeoff for cognitive radio (CR) networks under noise variance uncertainty. It is assumed that there are one white sub-band, and one target sub-band which is either white or non-white. Under this assumption, first we propose a novel generalized energy detector (GED) for examining the target sub-band by exploiting the noise information of the white sub-band, then, we study the tradeoff between the sensing time and achievable throughput of the CR network. To study this tradeoff, we consider the sensing time optimization for maximizing the throughput of the CR network while appropriately protecting the primary network. The sensing time is optimized by utilizing the derived detection and false alarm probabilities of the GED. The proposed GED does not suffer from signal to noise ratio (SNR) wall (i.e., robust against noise variance uncertainty) and outperforms the existing signal detectors. Moreover, the relationship between the proposed GED and conventional energy detector (CED) is quantified analytically. We show that the optimal sensing times with perfect and imperfect noise variances are not the same. In particular, when the frame duration is 2s, and SNR is -20dB, and each of the bandwidths of the white and target sub-bands is 6MHz, the optimal sensing times are 28.5ms and 50.6ms with perfect and imperfect noise variances, respectively.Comment: Accepted in CROWNCOM, June 2014, Oulu, Finlan

    Generalized detector as a spectrum sensor in cognitive radio networks

    Get PDF
    The implementation of the generalized detector (GD) in cognitive radio (CR) systems allows us to improve the spectrum sensing performance in comparison with employment of the conventional detectors. We analyze the spectrum sensing performance for the uncorrelated and spatially correlated receive antenna array elements. Addi¬tionally, we consider a practical case when the noise power at the output of GD linear systems (the preliminary and additional filters) is differed by value. The choice of the optimal GD threshold based on the minimum total error rate criterion is also discussed. Simulation results demonstrate superiority of GD implementation in CR sys¬tem as spectrum sensor in comparison with the energy detector (ED), weighted ED (WED), maximum-minimum eigenvalue (MME) detector, and generalized likelihood ratio test (GLRT) detecto

    Max-Min SNR Signal Energy based Spectrum Sensing Algorithms for Cognitive Radio Networks with Noise Variance Uncertainty

    Full text link
    This paper proposes novel spectrum sensing algorithms for cognitive radio networks. By assuming known transmitter pulse shaping filter, synchronous and asynchronous receiver scenarios have been considered. For each of these scenarios, the proposed algorithm is explained as follows: First, by introducing a combiner vector, an over-sampled signal of total duration equal to the symbol period is combined linearly. Second, for this combined signal, the Signal-to-Noise ratio (SNR) maximization and minimization problems are formulated as Rayleigh quotient optimization problems. Third, by using the solutions of these problems, the ratio of the signal energy corresponding to the maximum and minimum SNRs are proposed as a test statistics. For this test statistics, analytical probability of false alarm (PfP_f) and detection (PdP_d) expressions are derived for additive white Gaussian noise (AWGN) channel. The proposed algorithms are robust against noise variance uncertainty. The generalization of the proposed algorithms for unknown transmitter pulse shaping filter has also been discussed. Simulation results demonstrate that the proposed algorithms achieve better PdP_d than that of the Eigenvalue decomposition and energy detection algorithms in AWGN and Rayleigh fading channels with noise variance uncertainty. The proposed algorithms also guarantee the desired Pf(Pd)P_f(P_d) in the presence of adjacent channel interference signals
    • …
    corecore