27 research outputs found

    Fundamental Asymptotic Behavior of (Two-User) Distributed Massive MIMO

    Get PDF
    This paper considers the uplink of a distributed Massive MIMO network where NN base stations (BSs), each equipped with MM antennas, receive data from K=2K=2 users. We study the asymptotic spectral efficiency (as M→∞M\to \infty) with spatial correlated channels, pilot contamination, and different degrees of channel state information (CSI) and statistical knowledge at the BSs. By considering a two-user setup, we can simply derive fundamental asymptotic behaviors and provide novel insights into the structure of the optimal combining schemes. In line with [1], when global CSI is available at all BSs, the optimal minimum-mean squared error combining has an unbounded capacity as M→∞M\to \infty, if the global channel covariance matrices of the users are asymptotically linearly independent. This result is instrumental to derive a suboptimal combining scheme that provides unbounded capacity as M→∞M\to \infty using only local CSI and global channel statistics. The latter scheme is shown to outperform a generalized matched filter scheme, which also achieves asymptotic unbounded capacity by using only local CSI and global channel statistics, but is derived following [2] on the basis of a more conservative capacity bound.Comment: 6 pages, 2 figures, to be presented at GLOBECOM 2018, Abu Dhab

    Self-Learning Detector for the Cell-Free Massive MIMO Uplink: The Line-of-Sight Case

    Full text link
    The precoding in cell-free massive multiple-input multiple-output (MIMO) technology relies on accurate knowledge of channel responses between users (UEs) and access points (APs). Obtaining high-quality channel estimates in turn requires the path losses between pairs of UEs and APs to be known. These path losses may change rapidly especially in line-of-sight environments with moving blocking objects. A difficulty in the estimation of path losses is pilot contamination, that is, simultaneously transmitted pilots from different UEs that may add up destructively or constructively by chance, seriously affecting the estimation quality (and hence the eventual performance). A method for estimation of path losses, along with an accompanying pilot transmission scheme, is proposed that works for both Rayleigh fading and line-of-sight channels and that significantly improves performance over baseline state-of-the-art. The salient feature of the pilot transmission scheme is that pilots are structurally phase-rotated over different coherence blocks (according to a pre-determined function known to all parties), in order to create an effective statistical distribution of the received pilot signal that can be efficiently exploited by the proposed estimation algorithm.Comment: Paper accepted for presentation in IEEE SPAWC 2020 - 21st IEEE International Workshop on Signal Processing Advances in Wireless Communications. {\copyright} 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    Ultra Reliable Low Latency Communications in Massive Multi-Antenna Systems

    Get PDF

    Downlink Power Control in Massive MIMO Networks with Distributed Antenna Arrays

    Full text link
    In this paper, we investigate downlink power control in massive multiple-input multiple-output (MIMO) networks with distributed antenna arrays. The base station (BS) in each cell consists of multiple antenna arrays, which are deployed in arbitrary locations within the cell. Due to the spatial separation between antenna arrays, the large-scale propagation effect is different from a user to different antenna arrays in a cell, which makes power control a challenging problem as compared to conventional massive MIMO. We assume that the BS in each cell obtains the channel estimates via uplink pilots. Based on the channel estimates, the BSs perform maximum ratio transmission for the downlink. We then derive a closed-form spectral efficiency (SE) expression, where the channels are subject to correlated fading. Utilizing the derived expression, we propose a max-min power control algorithm to ensure that each user in the network receives a uniform quality of service. Numerical results demonstrate that, for the network considered in this work, optimizing for max-min SE through the max-min power control improves the sum SE of the network as compared to equal power allocation.Comment: Accepted to appear in ICC 2018, Kansas City, M
    corecore