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Abstract—Large number of antennas in Massive MIMO offer
a significant spatial diversity, which makes them an attractive
possibility for use in wireless settings that require very high
reliability. However, in 5G ultra-reliability is coupled with low
latency into ultra-reliable low-latency communications (URLLC).
This is very challenging as an efficient use of Massive MIMO
depends critically on training, which consumes significant re-
sources when the latency requirement is very tight. In this
paper we address this problem by exploiting the sparsity of
the propagation channel and therefore rely on estimation of a
small number of instantaneous channel coefficients. This leads
to robust beamforming and departs from the conventional use
of the instantaneous channel state information (CSI) at each
transmit antenna. We compare the performance of maximum
ratio transmission based on the conventional least-squares es-
timation of all channel coefficients and the one based on the
estimation of the fading coefficients of the channel features i.e. the
singular vectors of the covariance matrix. The singular vectors
are assumed known and unchangeable over a long term. The
results show that this approach makes massive MIMO a feasible
technology in URLLC scenarios.

I. INTRODUCTION

Massive antenna arrays at the base station (BS) or at the
terminal of a wireless system are seen as a prominent enabler
of more efficient communication and as a key enhancement
for 5G wireless networks [1]. Massive MIMO is essential in
achieving the high throughput and spectral efficiency required
for next generation networks [2]. However, massive antenna
arrays are also seen as means of improving the other two 5G
services, namely massive machine type communications [3]
and ultra-reliable low-latency communications (URLLC) [1],
[4]–[6]. Massive MIMO sets a new paradigm and performance
expectations from the physical layer, which is expected to
complement higher layer techniques in order to achieve the
stringent requirements of URLLC [7]–[10].

Massive arrays offer a large number of spatial degrees-of-
freedom (DoF) [9], which results in two properties that are
directly relevant for URLLC.

1) High signal-to-noise ratio (SNR) links due to the array
gain, and links that become quasi-immune to fast fading,
due to a phenomenon known as channel hardening [11]. It
should be briefly mentioned that the latter can be achieved
only in channels with rich scattering, and can heavily
reduce the need for packet retransmissions or frequency
diversity, as the channel becomes less likely to be subject
to deep fades.

2) High spatial multiplexing capabilities provide lower and
more evenly experienced latency if several terminals
need to be served simultaneously, which is an important
property, particularly for Tactile Internet [12].

In general, the benefits of massive antenna systems are
conditioned on the acquisition of the channel state informa-
tion (CSI) [13], be it in the form of instantaneous CSI for
each antenna or long-term statistical CSI (channel covariance
matrix). The most critical acquisition occurs at a massive array
when the CSI is used for transmission mode (CSIT). In time
division duplexing (TDD), the uplink and downlink channels
are assumed reciprocal so that the channel coefficients at all
antennas are estimated using uplink training and downlink
transmission is performed based on the resulting channel
estimates. However, when the channel is spatially sparse,
channel estimation becomes better when the sparsity of the
channel is exploited, as the number of instantaneous channel
coefficients to be estimated is smaller. This assumes that the
structure of the channel, i.e. the propagation directions, can be
estimated, as done in sparse channel estimation methods.

In URLLC, training is critical as it might take a significant
portion of the packet, leaving less time to transmit the data
and the quality of the channel estimation has a major impact.
This is the reason why it becomes a primary concern to exploit
the channel structure in URLLC.

In order to promote reliability and low latency, the general
purpose of the beamforming design is to rely as much as
possible on the structure of the channel (i.e., the propagation
paths, varying on a large scale basis) and as less as possible on
the small scale fading properties, while still benefiting from
the properties brought by the massive number of antennas. Pre-
vious works have considered transmission using the long-term
CSIT, [14]–[18], where the authors consider beamforming
along the singular vectors of the channel covariance matrix,
with several power allocation criteria between the singular
vectors. In [19], the authors consider the combination of long-
term channel statistics and instantaneous channel norm, fed
back in quantized form, to be sufficient for precoding in wide
area scenarios. Multiplexing users with either statistical CSI
or imperfect instantaneous CSI has been treated in [20], where
the interference between the two types of users is investigated.
The authors of [17] have shown that a beamforming design
relying on combining partial mean and covariance CSIT is
beneficial in order to improve the expected weighted sum
rate. Further, it is shown in [18] that even imperfect channel



covariance information can improve the spectral efficiency in
massive MIMO.

This paper further investigates the means of exploiting the
multiple antennas at the transmitter to ensure URLLC, for
which it appears preferable to combine instantaneous CSI
with long-term statistical CSI. In particular, we compare the
performance of maximum ratio transmission based on the con-
ventional least-squares estimation of all channel coefficients
and the one based on the estimation of the fading coefficients
of each channel features, here the singular vectors of the
covariance matrix. We assume here that the singular vectors
are perfectly known.

Throughout the paper we will use boldface small (x) and
boldface capital letters X to denote vectors and matrices,
respectively. The superscripts (·)∗, (·)T and (·)H denote the
conjugate, transpose and the conjugate transpose operations,
respectively.

II. SYSTEM MODEL AND MULTI-ANTENNA TRANSCEIVER
DESIGNS

A. Scenario and Channel Model

The basic scenario is displayed as a factory-type environ-
ment in Fig. 1. An access point is equipped with an array
comprising a very large number of antennas (M ) which serves
single-antenna terminals (actuators). The terminals are served
in a time division multiplexing manner.

We adopt a cluster-based channel model where each cluster
is characterized by a group of localized propagation paths
defined by their angle of departure (AoD) and their angle of
arrival (AoA). Each propagation path is affected independently
by an attenuation factor that follows a certain distribution.
Furthermore, if we consider a power decay throughout the
paths, this is also modeled with the attenuation factor. The
attenuation factor is then used as a standard deviation in order
to generate the random complex fading coefficients αi in (1).

The channel from the access point to a terminal is described
as the sum of the propagation paths over all the clusters (in
the sum, we make no distinction between clusters):

h =

NP∑
i=1

αisi. (1)

Here, h is a column of size M , NP is the total number of paths
and the column vector si is the normalized steering vector
(SV) for each path, defined as

si =
1√
M

exp

(
−j2π(k − 1)

δ

λ
Ω

)
, k = 1 : M (2)

where Ω = cos
(
π
M (k − 1) + π

M rand(0, 1)
)

is the random
angle of each beam. The direction of the propagation paths
correspond to long-term statistics, meaning that for a localized
movement of the terminal the directions remain unchanged,
whereas the coefficients {αi} correspond to small scale fading
and vary for small movements. Furthermore, we assume that
each steering vector has a relative power component, such that
we can define a decay parameter between the strongest and

Massive Array
Access Point

Actuator / motor

Single 
antenna

𝑠1
𝑠2 𝑠3 𝑠4

Fig. 1: Factory Scenario: one massive MIMO access point beamforming
towards a terminal using a coherent combination accross the structure of the
channel.

the weakest steering vector (0 dB decay means equal power
throughout the SVs, whereas higher decay means exponen-
tially decreasing power between the strongest and the weakest
SVs that is equal to the decay value).

B. Transceiver Designs

We assume the transceiver to operate in TDD mode. There-
fore, the channel is estimated at the access point using uplink
pilots sent by the terminal. The uplink training is followed by
a switching time, necessary due to propagation delay and the
processing time at the access point, as shown in Fig. 2.

DL symbols (d)

Switch UL/DL

UL Training

Symbols (t)

…

Fig. 2: Transceiver operation and frame structure.

The channel coefficients are estimated from UL training
symbols using the least-squares method. The UL received
training signal is then the M by t matrix Yt = hp+N, with
p being the row vector of pilot symbols used for training,
and N being complex additive white Gaussian noise with
zero mean and σ2

n variance. Therefore, the complex channel
estimate coefficients ĥ can be expressed as

ĥ =
1

Nt
Ytp

H . (3)

The least squares channel estimate can also be expressed in
terms of the true value of the channel and the estimation error
as

ĥ = h + e, (4)



where e ∼ CN (0, σ2
eI) and σ2

e = σ2
n/(σ

2
hNt).

C. Beamforming with maximum ratio transmission (MRT)

Maximum ratio transmission (MRT) relies on matched
filtering using the instantaneous estimated channel coefficients
at each antenna. Therefore, the transmitter uses the filter
coefficients wMRT = ĥH/‖ĥ‖, such that the received signal
at the terminal is

y =
ĥHhx

‖ĥ‖
+ n. (5)

In this case, the downlink signal-to-noise ratio (SNR) can be
expressed as

γDL
MRT =

σ2
h

σ2
n

∣∣∣ĥHh
∣∣∣2∥∥ĥ∥∥2 . (6)

D. Beamforming exploiting channel sparsity

Here we review how beamforming is performed based on
the covariance matrix of the received signal of the massive
array. We assume that the covariance matrix is perfectly
known. In practice, its estimation is done on a longer-term
than the instantaneous CSI.

The covariance matrices can be written in two different
ways: as a function of the steering vectors and using the
singular value decomposition. The covariance matrix of the
received signal at the BS is:

R = VΛVH . (7)

Equation (7) describes the singular value decomposition of
R: the columns of S comprise the singular vectors denoted
as vi and Λ is a diagonal matrix grouping the non zero
singular values. Without loss of generality, we assume that
the dimension of the signal subspace is equal to the number
of paths Np, so we can express the channel coefficients as

h =

Np∑
i=1

βivi. (8)

The beamforming is performed both using the second order
statistics from the covariance matrix and the instantaneous
channel estimate ĥ from (4) in the following manner. The
instantaneous CSI estimate ĥ is projected on the subspace
spanning all of the singular vectors (SVs) of the channel, in
order to get an estimate of the fading coefficients α̂i = ĥHvi.
The fading coefficients estimates for all paths can be expressed
as a row vector α̂ = ĥHV, which is projected onto the channel
propagation subspace, resulting in the projected estimated
channel being hp = ĥHVVH . The beamforming is the
corresponding normalized matched filter:

wallSV =
VVH ĥ∗∥∥VVH ĥ∗

∥∥ . (9)

Thus, the downlink SNR for this method (which we denote
SV - since it is based on coherently beamforming across the
singular vectors) can be written as

γDL
SV =

σ2
h

σ2
n

∣∣∣hTVVH ĥ∗
∣∣∣2∥∥∥VVH ĥ∗
∥∥∥2 . (10)

E. Post processing SNR - large scale analysis
By projecting the estimated instantaneous CSI ĥ onto the

subspace spanned by the singular vectors S we essentially
perform a denoising operation, by removing the estimation
error components that are outside of the projection subspace.

In this subsection, we provide approximate DL SNR ex-
pressions for the scheme relying only on a partial set of SVs
(denoted by SV) in (11), then generalize it to the case of using
all of the SVs (allSV) available in (12).

Substituting ĥ from (4) in (10) and neglecting the cross-
terms when expanding the numerator and denominator in (10)
we get

γDL
SV ≈

σ2
h

σ2
n

(
hHVsV

H
s h
) hHVsV

H
s h + σ2

e

hHVsVH
s h +Nsσ2

e

(11)

where Ns is the number of SVs used, Vs is the matrix
containing only the columns with the used SVs, and which
for the case of using all SVs becomes

γDL
allSV ≈

σ2
h

σ2
n

(
hHh

) hHh + σ2
e

hHh +Npσ2
e

. (12)

The large scale analysis can be applied to the case of MRT as
well, in which case the SNR can be approximated similarly
to (12), except that Np becomes M , which is the reason for
worse performance. The approximation reads

γDL
MRT ≈

σ2
h

σ2
n

(
hHh

) hHh + σ2
e

hHh +Mσ2
e

. (13)

F. Downlink Transmission and Outage Probability
We evaluate the reliability of the downlink transmission of

a packet of a fixed size of b bits. We assume that the training
takes t symbols, and due to the lantecy constraint and the
symbol lost during the switching time (Fig. 2), we are left
with d symbols for the data transmission. Therefore, the data
rate is R = b

2d (one symbol is regarded as 2 channel uses due
to having a complex channel [21, footnote 1]), from which
we can determine the SNR threshold required to successfully
receive a packet as γth = 2R − 1. Since the transmit power is
limited, the SNRs expressed in (10) and (6) may fall below
the threshold. We evaluate this outage probability by using

Poutage = Pr
[
γDL < γth

]
. (14)

The main reason for considering the outage probability as
a suitable evaluation metric is because the packet errors
are generally due to not meeting the SNR requirement in
the downlink, rather than the random noise component at
the terminal. Finite blocklength theory states that the outage
probability is a correct performance metric even for short
lengths [22].
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Fig. 3: Dependency of the mean SNR (left subplot) and relative standard deviation (RSD) of SNR (right subplot) on the training length, for different
transmission schemes, and for two channels without (3a) and with (3b) power decay between SVs. Pre-processing SNR = 4dB, Np = 20. Circle markers
denote simulations and ”x” markers denote theoretical large scale analysis.

III. PERFORMANCE EVALUATION

We perform evaluations of the post-processing SNR and
packet outage probability via Monte-Carlo simulations, con-
sidering the parameter assumptions listed in Table I.

Packet length 32 bytes (256 bits)
Subcarrier spacing 60KHz
Latency 2 slots × 14 symbols = 0.5ms
BS antennas M = 100
Terminal antennas 1
Moderate channel scattering Np = 20 paths
Power decay of paths [0, 20]dB

TABLE I: System parameters.

We show the mean SNR and its relative standard deviation
(RSD) in Fig. 3 for channels with Np = 20 paths and either
equal power SVs (Fig. 3a) or with 20 dB decay between the
strongest and weakest SVs (Fig. 3b). The first observation we
can draw from Fig. 3 is that the scheme relying on coherent
transmission along all the SVs outperforms MRT both in terms
of mean SNR and RSD of the SNR (the lower RSD, the better).
The reason for this is that the imperfect instantaneous CSI is
projected on the channel structure, thereby being denoised.
Furthermore, it can also be noticed that the training duration
has a greater impact on the MRT scheme than on the proposed
schemes, as the mean and RSD of the SNR tend to vary more
depending on the number of training symbols.

Comparing the mean SNRs from Figures 3a and 3b, we
notice that in the case of power decay, the mean SNR of the
strongest 10 SVs scheme has improved. This is due to the fact
that more power is concentrated in the 10 strongest SVs. On
the other hand, on the RSD subplot we notice an increase
for all schemes due to the power decay. This corresponds
to a diversity loss, since some of the paths in the channel
experience lower power.

1 2 3 4 5 6

training duration [symbols]

10-5

10-4

10-3

10-2

10-1

100
P

ou
ta

ge

MRT
all SVs
10 SVs
MRT path decay
all SVs path decay
10 SVs path decay

Fig. 4: Dependency of the outage on the training length, for different
transmission schemes and path power decay. Solid lines denote no power
decay between paths, and dashed lines denote 20 dB decay between the
strongest and weakest path.

When looking at the outage probability in Fig. 4, we
notice a similar ranking of the methods as described by
the RSD in Fig. 3. However, it should be also noticed that
since we deal with a latency constrained scenario, there is
an optimum number of training symbols that minimizes the
outage probability. The optimum number of training symbols
is smaller for the schemes based on SVs than for MRT, as
expected after seeing in Fig. 3 that a higher number of training
symbols is not as beneficial for SV schemes as it is for MRT.

In Fig. 5 we show what is the minimum pre-processing
SNR required to achieve the target reliability of 1 − 10−5.
The vertical lines are the SNRs required for MRT in the case
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Fig. 5: Minimum number of SVs for given pre-processing SNR in order to
achieve a target reliability of 1 − 10−5, shown in solid lines for a channel
with no decay among paths and in dashed lines for 20 dB decay between the
strongest and weakest path.

of no decay (solid) and 20 dB decay (dashed). For the scheme
relying on the channel structure, we show also how many
SVs are needed to use in order to achieve the reliability for a
specific pre-processing SNR.

IV. CONCLUSION AND FUTURE WORK

In this paper we have investigated a beamforming design
based on both imperfect instantaneous CSI and the channel
structure. Specifically, we consider a precoder which projects
the imperfect instantaneous CSI onto the subspace spanned by
the SVs of the channel covariance matrix. This design proves
to be suitable for URLLC, as it not only improves the mean
SNR, but also reduces the relative standard deviation of the
SNR, thereby improving reliability compared to the case of
MRT.

Possible extensions of this work may consider evaluating the
performance of the scheme with imperfect channel covariance
matrix estimation, as well as multi-user multiplexing.
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