22 research outputs found

    Neural Network-Optimized Channel Estimator and Training Signal Design for MIMO Systems with Few-Bit ADCs

    Full text link
    This paper is concerned with channel estimation in MIMO systems with few-bit ADCs. In these systems, a linear minimum mean-squared error (MMSE) channel estimator obtained in closed-form is not an optimal solution. We first consider a deep neural network (DNN) and train it as a non-linear MMSE channel estimator for few-bit MIMO systems. We then present a first attempt to use DNN in optimizing the training signal and the MMSE channel estimator concurrently. Specifically, we propose an autoencoder with a specialized first layer, whose weights embed the training signal matrix. Consequently, the trained autoencoder prompts a new training signal design that is customized for the MIMO channel model under consideration.Comment: 5 pages, 3 figures, to appear in IEEE Signal Processing Letter

    Protograph LDPC Code Design For LS-MIMO 1-bit ADC Systems

    Get PDF
    Recently, two emerging research topics are protograph low-density parity-check (P-LDPC) and large-scale multi-input multi-output (LS-MIMO) with low-resolution analog-to-digital (ADC) converters (LS-MIMO-LOW-ADC). In these directions, many research works have proposed 1-bit ADC as a good candidate for LS-MIMO systems in order to save both transmission power and circuit energy dissipation. However, we observed that previously reported P-LDPC codes might not have good performance for LS-MIMO systems with 1-bit ADC. Hence, we perform a re-design of the P-LDPC codes for the above systems in this paper. The new codes demonstrate a good coding gain from 0:3 dB at rate 1/2 to 0:5 dB at rate 2/3 in different LS-MIMO configurations with 1-bit ADC

    On The Performance Of 1-Bit ADC In Massive MIMO Communication Systems

    Get PDF
    Massive multiple-input multiple-output (MIMO) with low-resolution analog-to-digital converters is a rational solution to deal with hardware costs and accomplish optimal energy efficiency. In particular, utilizing 1-bit ADCs is one of the best choices for massive MIMO systems. This paper investigates the performance of the 1-bit ADC in the wireless coded communication systems where the robust channel coding, protograph low-density parity-check code (LDPC), is employed. The investigation reveals that the performance of the conventional 1-bit ADC with the truncation limit of 3-sigma is severely destroyed by the quantization distortion even when the number of antennas increases to 100. The optimized 1-bit ADC, though having substantial performance gain over the conventional one, is also affected by the quantization distortion at high coding rates and low MIMO configurations. Importantly, the investigation results suggest that the protograph LDPC codes should be re-designed to combat the negative effect of the quantization distortion of the 1-bit ADC

    Sparsity-Aware Low-Power ADC Architecture with Advanced Reconstruction Algorithms

    Get PDF
    Compressive sensing (CS) technique enables a universal sub-Nyquist sampling of sparse and compressible signals, while still guaranteeing the reliable signal recovery. Its potential lies in the reduced analog-to-digital conversion rate in sampling broadband and/or multi-channel sparse signals, where conventional Nyquist-rate sampling are either technology impossible or extremely hardware costly. Nevertheless, there are many challenges in the CS hardware design. In coherent sampling, state-of-the-art mixed-signal CS front-ends, such as random demodulator and modulated wideband converter, suffer from high power and nonlinear hardware. In signal recovery, state-of-the-art CS reconstruction methods have tractable computational complexity and probabilistically guaranteed performance. However, they are still high cost (basis pursuit) or noise sensitive (matching pursuit). In this dissertation, we propose an asynchronous compressive sensing (ACS) front-end and advanced signal reconstruction algorithms to address these challenges. The ACS front-end consists of a continuous-time ternary encoding (CT-TE) scheme which converts signal amplitude variations into high-rate ternary timing signal, and a digital random sampler (DRS) which captures the ternary timing signal at sub-Nyquist rate. The CT-TE employs asynchronous sampling mechanism for pulsed-like input and has signal-dependent conversion rate. The DRS has low power, ease of massive integration, and excellent linearity in comparison to state-of-the-art mixed-signal CS front-ends. We propose two reconstruction algorithms. One is group-based total variation, which exploits piecewise-constant characteristics and achieves better mean squared error and faster convergence rate than the conventional TV scheme with moderate noise. The second algorithm is split-projection least squares (SPLS), which relies on a series of low-complexity and independent l2-norm problems with the prior on ternary-valued signal. The SPLS scheme has good noise robustness, low-cost signal reconstruction and facilitates a parallel hardware for real-time signal recovery. In application study, we propose multi-channel filter banks ACS front-end for the interference-robust radar. The proposed receiver performs reliable target detection with nearly 8-fold data compression than Nyquist-rate sampling in the presence of -50dBm wireless interference. We also propose an asynchronous compressed beamformer (ACB) for low-power portable diagnostic ultrasound. The proposed ACB achieves 9-fold data volume compression and only 4.4% contrast-to-noise ratio loss on the imaging results when compared with the Nyquist-rate ADCs

    Noise Variance Estimation Using Asymptotic Residual in Compressed Sensing

    Full text link
    In compressed sensing, the measurement is usually contaminated by additive noise, and hence the information of the noise variance is often required to design algorithms. In this paper, we propose an estimation method for the unknown noise variance in compressed sensing problems. The proposed method called asymptotic residual matching (ARM) estimates the noise variance from a single measurement vector on the basis of the asymptotic result for the β„“1\ell_{1} optimization problem. Specifically, we derive the asymptotic residual corresponding to the β„“1\ell_{1} optimization and show that it depends on the noise variance. The proposed ARM approach obtains the estimate by comparing the asymptotic residual with the actual one, which can be obtained by the empirical reconstruction without the information of the noise variance. Simulation results show that the proposed noise variance estimation outperforms a conventional method based on the analysis of the ridge regularized least squares. We also show that, by using the proposed method, we can achieve good reconstruction performance in compressed sensing even when the noise variance is unknown.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore