Neural Network-Optimized Channel Estimator and Training Signal Design for MIMO Systems with Few-Bit ADCs

Abstract

This paper is concerned with channel estimation in MIMO systems with few-bit ADCs. In these systems, a linear minimum mean-squared error (MMSE) channel estimator obtained in closed-form is not an optimal solution. We first consider a deep neural network (DNN) and train it as a non-linear MMSE channel estimator for few-bit MIMO systems. We then present a first attempt to use DNN in optimizing the training signal and the MMSE channel estimator concurrently. Specifically, we propose an autoencoder with a specialized first layer, whose weights embed the training signal matrix. Consequently, the trained autoencoder prompts a new training signal design that is customized for the MIMO channel model under consideration.Comment: 5 pages, 3 figures, to appear in IEEE Signal Processing Letter

    Similar works

    Full text

    thumbnail-image

    Available Versions