4 research outputs found

    A Light Signalling Approach to Node Grouping for Massive MIMO IoT Networks

    Full text link
    Massive MIMO is a promising technology to connect very large numbers of energy constrained nodes, as it offers both extensive spatial multiplexing and large array gain. A challenge resides in partitioning the many nodes in groups that can communicate simultaneously such that the mutual interference is minimized. We here propose node partitioning strategies that do not require full channel state information, but rather are based on nodes' respective directional channel properties. In our considered scenarios, these typically have a time constant that is far larger than the coherence time of the channel. We developed both an optimal and an approximation algorithm to partition users based on directional channel properties, and evaluated them numerically. Our results show that both algorithms, despite using only these directional channel properties, achieve similar performance in terms of the minimum signal-to-interference-plus-noise ratio for any user, compared with a reference method using full channel knowledge. In particular, we demonstrate that grouping nodes with related directional properties is to be avoided. We hence realise a simple partitioning method requiring minimal information to be collected from the nodes, and where this information typically remains stable over a long term, thus promoting their autonomy and energy efficiency

    Massive MIMO Optimization with Compatible Sets

    No full text
    Massive multiple-input multiple-output (MIMO) is expected to be a vital component in future 5G systems. As such, there is a need for new modeling in order to investigate the performance of massive MIMO not only at the physical layer but also higher up the networking stack. In this paper, we present general optimization models for massive MIMO, based on mixed-integer programming and compatible sets, with both maximum ratio combining and zero-forcing precoding schemes. We then apply our models to the case of joint device scheduling and power control for heterogeneous devices and traffic demands, in contrast to the existing power control schemes that consider only homogeneous users and saturated scenarios. Our results show that substantial benefits, in terms of energy usage, can be achieved without sacrificing throughput and that both the signaling overhead and the complexity of end devices can be reduced by abrogating the need for uplink power control through efficient scheduling

    Massive MIMO Optimization with Compatible Sets

    No full text
    Massive multiple-input multiple-output (MIMO) is expected to be a vital component in future 5G systems. As such, there is a need for new modeling in order to investigate the performance of massive MIMO not only at the physical layer but also higher up the networking stack. In this paper, we present general optimization models for massive MIMO, based on mixed-integer programming and compatible sets, with both maximum ratio combining and zero-forcing precoding schemes. We then apply our models to the case of joint device scheduling and power control for heterogeneous devices and traffic demands, in contrast to the existing power control schemes that consider only homogeneous users and saturated scenarios. Our results show that substantial benefits, in terms of energy usage, can be achieved without sacrificing throughput and that both the signaling overhead and the complexity of end devices can be reduced by abrogating the need for uplink power control through efficient scheduling

    Massive MIMO Optimization With Compatible Sets

    No full text
    corecore