30,223 research outputs found

    Bringing power and progress to Africa in a financially and environmentally sustainable manner

    Full text link
    EXECUTIVE SUMMARY: The future of electricity supply and delivery on the continent of Africa represents one of the thorniest challenges facing professionals in the global energy, economics, finance, environmental, and philanthropic communities. Roughly 600 million people in Africa lack any access to electricity. If this deficiency is not solved, extreme poverty for many Africans is virtually assured for the foreseeable future, as it is widely recognized that economic advancement cannot be achieved in the 21st Century without good electricity supply. Yet, if Africa were to electrify in the same manner pursued in developed economies around the world during the 20th Century, the planet’s global carbon budget would be vastly exceeded, greatly exacerbating the worldwide damages from climate change. Moreover, due to low purchasing power in most African economies and fiscal insolvency of most African utilities, it is unclear exactly how the necessary infrastructure investments can be deployed to bring ample quantities of power – especially zero-carbon power – to all Africans, both those who currently are unconnected to any grid as well as those who are now served by expensive, high-emitting, limited and unreliable electricity supply. With the current population of 1.3 billion people expected to double by 2050, the above-noted challenges associated with the African electricity sector may well get substantially worse than they already are – unless new approaches to infrastructure planning, development, finance and operation can be mobilized and propagated across the continent. This paper presents a summary of the present state and possible futures for the African electricity sector. A synthesis of an ever-growing body of research on electricity in Africa, this paper aims to provide the reader a thorough and balanced context as well as general conclusions and recommendations to better inform and guide decision-making and action. [TRUNCATED]This paper was developed as part of a broader initiative undertaken by the Institute for Sustainable Energy (ISE) at Boston University to explore the future of the global electricity industry. This ISE initiative – a collaboration with the Global Energy Interconnection and Development Cooperation Organization (GEIDCO) of China and the Center for Global Energy Policy within the School of International and Public Affairs at Columbia University – was generously enabled by a grant from Bloomberg Philanthropies. The authors gratefully acknowledge the support and contributions of the above funders and partners in this research

    Low-carbon energy: a roadmap

    Get PDF
    Technologies available today, and those expected to become competitive over the next decade, will permit a rapid decarbonization of the global energy economy. New renewable energy technologies, combined with a broad suite of energy-efficiency advances, will allow global energy needs to be met without fossil fuels and by adding only minimally to the cost of energy services The world is now in the early stages of an energy revolution that over the next few decades could be as momentous as the emergence of oiland electricity-based economies a century ago. Double-digit market growth, annual capital flows of more than $100 billion, sharp declines in technology costs, and rapid progress in the sophistication and effectiveness of government policies all herald a promising new energy era. Advanced automotive, electronics, and buildings systems will allow a substantial reduction in carbon dioxide (CO2) emissions, at negative costs once the savings in energy bills is accounted for. The savings from these measures can effectively pay for a significant portion of the additional cost of advanced renewable energy technologies to replace fossil fuels, including wind, solar, geothermal, and bioenergy. Resource estimates indicate that renewable energy is more abundant than all of the fossil fuels combined, and that well before mid-century it will be possible to run most national electricity systems with minimal fossil fuels and only 10 percent of the carbon emissions they produce today. The development of smart electricity grids, the integration of plug-in electric vehicles, and the addition of limited storage capacity will allow power to be provided without the baseload plants that are the foundation of today's electricity systems. Recent climate simulations conclude that CO2 emissions will need to peak within the next decade and decline by at least 50 to 80 percent by 2050. This challenge will be greatly complicated by the fact that China, India, and other developing countries are now rapidly developing modern energy systems. The only chance of slowing the buildup of CO2 concentrations soon enough to avoid catastrophic climate change that could take centuries to reverse is to transform the energy economies of industrial and developing countries almost simultaneously. This would have seemed nearly impossible a few years ago, but since then, the energy policies and markets of China and India have begun to change rapidly -- more rapidly than those in many industrial countries. Renewable and efficiency technologies will allow developing countries to increase their reliance on indigenous resources and reduce their dependence on expensive and unstable imported fuelsAround the world, new energy systems could become a huge engine of industrial development and job creation, opening vast new economic opportunities. Developing countries have the potential to "leapfrog" the carbon-intensive development path of the 20th century and go straight to the advanced energy systems that are possible today. Improved technology and high energy prices have created an extraordinarily favorable market for new energy systems over the past few years. But reaching a true economic tipping point will require innovative public policies and strong political leadership

    Technological Solutions for Energy Security and Sustainability

    Get PDF
    This paper addresses the question: how can we minimize the expected time between now and the time when we achieve three measures of sustainability and security together -- independence from oil in cars and trucks, very deep reductions in greenhouse gas emissions and deep reductions in natural gas for electricity? Specific new technologies and metrics for progress are discussed, in context, linked to new information from IEEE, NSF, the State of the Future project and other sources

    Ethiopia's infrastructure: a continental perspective

    Get PDF
    Infrastructure contributed 0.6 percentage points to Ethiopia's annual per capita GDP growth over the last decade. Raising the country's infrastructure endowment to that of the region's middle-income countries could add an additional 3 percentage points to infrastructure's contribution to growth. Ethiopia's infrastructure successes include developing Ethiopia Airlines, a leading regional carrier; upgrading its network of trunk roads; and rapidly expanding access to water and sanitation.The country's greatest infrastructure challenge lies in the power sector, where a further 8,700 megawatts of generating plant are needed over the next decade, implying a doubling of current capacity. The transport sector faces the challenges of low levels of rural accessibility and inadequate road maintenance. Ethiopia’s ICT sector currently suffers from a poor institutional and regulatory framework. Addressing Ethiopia's infrastructure deficit will require a sustained annual expenditure of 5.1billionoverthenextdecade.Thepowersectoralonerequires5.1 billion over the next decade. The power sector alone requires 3.3 billion annually, with 1billionneededtofacilitateregionalpowertrading.Thatlevelofspendingrepresents40percentofthecountry′sGDPandatriplingofthe1 billion needed to facilitate regional power trading. That level of spending represents 40 percent of the country's GDP and a tripling of the 1.3 billion spent annually in the mid-2000s. As of 2006, there was an annual funding gap of $3.5 billion. Improving road maintenance, removing inefficiencies in power (notably underpricing), and privatizing ICT services could shrink the gap. But Ethiopia needs a significant increase in its already proportionally high infrastructure funding and careful handling of public and private investments if it is to reach its infrastructure targets within a reasonable time.Transport Economics Policy&Planning,Infrastructure Economics,Public Sector Economics,Banks&Banking Reform,Town Water Supply and Sanitation

    SOME REFLECTIONS ON CLIMATE CHANGE, GREEN GROWTH ILLUSIONS AND DEVELOPMENT SPACE

    Get PDF
    Many economists and policy makers advocate a fundamental shift towards “green growth” as the new, qualitatively-different growth paradigm, based on enhanced material/resource/energy efficiency and drastic changes in the energy mix. “Green growth” may work well in creating new growth impulses with reduced environmental load and facilitating related technological and structural change. But can it also mitigate climate change at the required scale (i.e. significant, absolute and permanent decline of GHG emissions at global level) and pace? This paper argues that growth, technological, population-expansion and governance constraints as well as some key systemic issues cast a very long shadow on the “green growth” hopes. One should not deceive oneself into believing that such evolutionary (and often reductionist) approach will be sufficient to cope with the complexities of climate change. It may rather give much false hope and excuses to do nothing really fundamental that can bring about a U-turn of global GHG emissions. The proponents of a resource efficiency revolution and a drastic change in the energy mix need to scrutinize the historical evidence, in particular the arithmetic of economic and population growth. Furthermore, they need to realize that the required transformation goes beyond innovation and structural changes to include democratization of the economy and cultural change. Climate change calls into question the global equality of opportunity for prosperity (i.e. ecological justice and development space) and is thus a huge developmental challenge for the South and a question of life and death for some developing countries (who increasingly resist the framing of climate protection versus equity).

    Going for growth: our future prosperity

    Get PDF
    • …
    corecore