5 research outputs found

    ICR ANNUAL REPORT 2019 (Volume 26)[All Pages]

    Get PDF
    This Annual Report covers from 1 January to 31 December 201

    Landauer vs. Nernst: What is the True Cost of Cooling a Quantum System?

    Full text link
    Thermodynamics connects our knowledge of the world to our capability to manipulate and thus to control it. This crucial role of control is exemplified by the third law of thermodynamics, Nernst's unattainability principle, stating that infinite resources are required to cool a system to absolute zero temperature. But what are these resources and how should they be utilised? And how does this relate to Landauer's principle that famously connects information and thermodynamics? We answer these questions by providing a framework for identifying the resources that enable the creation of pure quantum states. We show that perfect cooling is possible with Landauer energy cost given infinite time or control complexity. However, such optimal protocols require complex unitaries generated by an external work source. Restricting to unitaries that can be run solely via a heat engine, we derive a novel Carnot-Landauer limit, along with protocols for its saturation. This generalises Landauer's principle to a fully thermodynamic setting, leading to a unification with the third law and emphasising the importance of control in quantum thermodynamics.Comment: 15 pages, 4 figures, 46 pages of appendice

    Masanori Ohya, 1947 – 2016

    No full text
    corecore