1,035 research outputs found

    Validation of aproximate dependability models of a RAID architecture with orthogonal organization

    Get PDF
    RAID (Redundant Array of Inexpensive Disks) are widely used in storage servers. Level-5 RAID is one of the most popular RAID architectures. Numerical analysis of exact Markovian dependability models of level-5 RAID architecture with orthogonal organization is unfeasible for many realistic model parameters due to the size of the resulting state space. In this paper we develop approximate dependability models for a level-5 RAID architecture with orthogonal organization which have small state spaces. We consider two measures: the steady-state unavailability and the unreliability. The models encompass disk hot spares and imperfect disk reconstruction. Using bounding techniques we analyze the accuracy of the models and show that the models are extremely accurate.Postprint (published version

    Formal Dependability Engineering with MIOA

    Get PDF
    In this paper, we introduce MIOA, a stochastic process algebra-like specification language with datatypes, as well as a logic intSPDL, and its model checking algorithms. MIOA, which stands for Markovian input/output automata language, is an extension of Lynch's input/automata with Markovian timed transitions.MIOA can serve both as a fully fledged ``stand-alone'' specification language and the semantic model for the architectural dependability modelling and evaluation language Arcade. The logic intSPDL is an extension of the stochastic logic SPDL, to deal with the specialties of MIOA. intSPDL in the context of Arcade can be seen as the semantic model of abstract and complex dependability measures that can be defined in the Arcade framework. We define syntax and semantics of both MIOA and intSPDL, and show examples of applying MIOA and intSPDL in the realm of dependability modelling with Arcade

    Techniques for the Fast Simulation of Models of Highly dependable Systems

    Get PDF
    With the ever-increasing complexity and requirements of highly dependable systems, their evaluation during design and operation is becoming more crucial. Realistic models of such systems are often not amenable to analysis using conventional analytic or numerical methods. Therefore, analysts and designers turn to simulation to evaluate these models. However, accurate estimation of dependability measures of these models requires that the simulation frequently observes system failures, which are rare events in highly dependable systems. This renders ordinary Simulation impractical for evaluating such systems. To overcome this problem, simulation techniques based on importance sampling have been developed, and are very effective in certain settings. When importance sampling works well, simulation run lengths can be reduced by several orders of magnitude when estimating transient as well as steady-state dependability measures. This paper reviews some of the importance-sampling techniques that have been developed in recent years to estimate dependability measures efficiently in Markov and nonMarkov models of highly dependable system

    A comparison of numerical splitting-based methods for Markovian dependability and performability models

    Get PDF
    Iterative numerical methods are an important ingredient for the solution of continuous time Markov dependability models of fault-tolerant systems. In this paper we make a numerical comparison of several splitting-based iterative methods. We consider the computation of steady-state reward rate on rewarded models. This measure requires the solution of a singular linear system. We consider two classes of models. The first class includes failure/repair models. The second class is more general and includes the modeling of periodic preventive test of spare components to reduce the probability of latent failures in inactive components. The periodic preventive test is approximated by an Erlang distribution with enough number of stages. We show that for each class of model there is a splitting-based method which is significantly more efficient than the other methods.Postprint (published version

    Rich Interfaces for Dependability: Compositional Methods for Dynamic Fault Trees and Arcade models

    Get PDF
    This paper discusses two behavioural interfaces for reliability analysis: dynamic fault trees, which model the system reliability in terms of the reliability of its components and Arcade, which models the system reliability at an architectural level. For both formalisms, the reliability is analyzed by transforming the DFT or Arcade model to a set of input-output Markov Chains. By using compositional aggregation techniques based on weak bisimilarity, significant reductions in the state space can be obtained

    Distributed Markovian Bisimulation Reduction aimed at CSL Model Checking

    Get PDF
    The verification of quantitative aspects like performance and dependability by means of model checking has become an important and vivid area of research over the past decade.\ud \ud An important result of that research is the logic CSL (continuous stochastic logic) and its corresponding model checking algorithms. The evaluation of properties expressed in CSL makes it necessary to solve large systems of linear (differential) equations, usually by means of numerical analysis. Both the inherent time and space complexity of the numerical algorithms make it practically infeasible to model check systems with more than 100 million states, whereas realistic system models may have billions of states.\ud \ud To overcome this severe restriction, it is important to be able to replace the original state space with a probabilistically equivalent, but smaller one. The most prominent equivalence relation is bisimulation, for which also a stochastic variant exists (Markovian bisimulation). In many cases, this bisimulation allows for a substantial reduction of the state space size. But, these savings in space come at the cost of an increased time complexity. Therefore in this paper a new distributed signature-based algorithm for the computation of the bisimulation quotient of a given state space is introduced.\ud \ud To demonstrate the feasibility of our approach in both a sequential, and more important, in a distributed setting, we have performed a number of case studies

    Compositional Performance Modelling with the TIPPtool

    Get PDF
    Stochastic process algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art techniques, and wrapped in a user-friendly graphical front end. Apart from highlighting the general benefits of the tool, we also discuss some lessons learned during development and application of the TIPPtool. A non-trivial model of a real life communication system serves as a case study to illustrate benefits and limitations

    Confluence reduction for Markov automata

    Get PDF
    Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. Recently, the process algebra MAPA was introduced to efficiently model such systems. As always, the state space explosion threatens the analysability of the models generated by such specifications. We therefore introduce confluence reduction for Markov automata, a powerful reduction technique to keep these models small. We define the notion of confluence directly on Markov automata, and discuss how to syntactically detect confluence on the MAPA language as well. That way, Markov automata generated by MAPA specifications can be reduced on-the-fly while preserving divergence-sensitive branching bisimulation. Three case studies demonstrate the significance of our approach, with reductions in analysis time up to an order of magnitude
    • ā€¦
    corecore