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Abstract. Iterative numerical methods are an important ingredient for
the solution of continuous time Markov dependability models of fault-
tolerant systems. In this paper we make a numerical comparison of se-
veral splitting-based iterative methods. We consider the computation
of steady-state reward rate on rewarded models. This measure requires
the solution of a singular linear system. We consider two classes of mo-
dels. The first class includes failure/repair models. The second class is
more general and includes the modeling of periodic preventive test of
spare components to reduce the probability of latent failures in inactive
components. The periodic preventive test is approximated by an Erlang
distribution with enough number of stages. We show that for each class
of model there is a splitting-based method which is significantly more
efficient than the other methods.

1 Introduction

Continuous time Markov chains (CTMCs) are widely used for dependability
modeling. For these models, several measures of interest can be computed from
the solution vector of a linear system of equations. Typically, such a system is
sparse and may have hundreds of thousands of unknowns, so it must, in general,
be solved numerically using an iterative method.

Several currently available tools allow us to solve dependability models. These
are, among others, SAVE [7], SPNP [3], UltraSAN [5] and SURF-2 [2]. SPNP
uses Successive Overrelaxation (SOR) with dynamic adjustment of the relaxa-
tion parameter w [4]. SAVE uses SOR for the computation of the steady-state
probability vector and SOR combined with an acceleration technique [10] for
computation of mean time to failure (MTTF) like measures. UltraSAN offers a
direct method with techniques to reduce the degree of fill-in and SOR, being w
selected by the user. Finally, SURF-2 uses the gradient-conjugate method (see,
for instance, [14]).
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Several papers have compared numerical methods for solving the linear sy-
stems of equations which arise when solving CTMC models. In an early paper
[8], performance models are considered and several iterative methods are com-
pared for the computation of the stationary probability vector of an ergodic
Markov chain. These methods include Gauss-Seidel (GS), SOR, block SOR and
Chebyshev acceleration with GS preconditioning. For SOR, an algorithm based
on the theory of p-cyclic matrices [17] is used to select a value for w. In [I4], fai-
lure/repair models are considered and SOR with dynamic adjustment of w also
based on the theory of p-cyclic matrices is compared with GS and the power me-
thods, showing that SOR is considerably more efficient specially for the linear
systems arising in MTTF computations. In [IT] a number of direct and iterative
methods are reviewed in the context of performance models. Among others, three
spliting-base methods are considered: GS, SOR and symmetric SOR. In [6] the
generalized minimal residual method and two variants of the quasi-minimal resi-
dual algorithm are compared. In [9], direct and splitting-based iterative methods
are considered for solving CTMC models arising in communication systems and
the authors suggest to use SOR with suitable values for w in combination with
some aggregation/disaggregation steps.

In this paper we compare splitting-based iterative methods for the solution
of linear systems which arise in the computation of the steady-state reward rate
(SSRR) defined over rewarded CTMC models. We start by defining formally
the measure and establishing the linear system which has to be solved. Let
X = {X(t);t > 0} be a finite irreducible CTMC. X has state space {2 and
infinitesimal generator Q = (¢i;)i,je- Let r;, i € 2 be a reward rate structure
defined over X. The steady-state reward rate is defined as:

SSRR = tliglo E[TX(t)]
and can be computed as

SSRR = Zriﬂ'i 5
i€

where 7 = (71;);c 0 is the steady-state probability distribution vector of X, which
is the only normalized (||7||; = 1) solution of:

QT'r =0, (1)

where matrix Q7 is singular and the superscript 7' indicates transpose. The
steady-state unavailability is a particular case of SSRR obtained by defining a
reward rate structure r; = 0,7 € U, r; = 1, i € D, where U is the subset of
2 including the up (operational) states and D is the subset of {2 including the
down states.

In this paper we are concerned with numerical iterative methods to solve
the linear system (). Two classes of models will be considered. The first class
include failure/repair models like those which can be specified by the SAVE mo-
deling language [7]. Basically, these models correspond to fault-tolerant systems
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made up of components which fail and are repaired with exponential distributi-
ons. There is an state in which all components are unfailed having only outgoing
failure transitions. The remaining states have at least an outgoing repair transi-
tion. Note that in this class of models the detection of the failure of a component
is assumed to be instantaneous, i.e. all failed components are immediately sche-
duled for repair. In the second class of models which we will consider, failures of
“spare” (inactive) components will be detected only when they are tested. Test
of spare components will be assumed to be performed periodically with determi-
nistic intertests times. To be able to use CTMCs to represent such systems the
deterministic intertests time will be approximated by a K-Erlang distribution
with K large enough to obtain convergence in SSRR as K is incremented.

We will analyze and compare GS, SOR and block Gauss-Seidel (BGS). A
more complete comparison including an efficient implementation of GMRES
(see, for instance, [13]) and MTTF like measures can be found in [16]. We will
show that GS is guaranteed to converge for () when the chain X is generated
breadth-first and the first generated state is exchanged with the last generated
state. Also, an algorithm to select dynamically w in SOR will be briefly reviewed.
The rest of the paper is organized as follows. Section [ reviews the iterative
methods. Section [3 analyzes convergence issues. Section M presents examples
and numerical results and Sect. [l presents the conclusions.

2 Numerical Methods

We are interested in solving a linear system of the form
Ax =0 , (2)

where A = QT and b = 0. In the following we will let n be the dimension of A.
We next review splitting-based iterative numerical methods which can be used
to solve (@).

2.1 Gauss-Seidel, SOR and Block Gauss-Seidel

Splitting-based methods are based on the decomposition of matrix A in the form
A =M — N, where M is nonsingular. The iterative method is then:

D) = M'Nz® + M~'b |

where %) is the k-th iterate for .

Both GS and SOR are easily derived by considering the decomposition A =
D — E — F, where D is the diagonal of A and —FE and —F are, respectively,
the strict lower and upper part of A. GS is obtained by taking M = D — FE and
N = F'. The iterative step of GS can then be described as:

2+ = (D~ E)"'Fa®™ + (D - E)"'b ,
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or in terms of the components of A as:

i—1 n

k+1) 1 Z (k+1 } : k) ;

.ZL'Z( :a(— : 1Qi,jﬁﬁj )— . ‘+1ai7j17§‘ +bi>a z:l,...,n . (3)
) j= Jj=t

SOR is obtained by taking M = (D — wE)/w and N = ((1 - w)D + wF) /w.
The iterative step of SOR can then be described as:

k) — (D — wE) " ((1-w)D + wF)w(k) + (D —-wE)'wb ,
or in terms of the components of A as:

xgkﬂ) = w4 (1 —w)x(k), i=1,...,n ,
where 55 is the right-hand side of ().

BGS is the straightforward generalization of GS when the coefficient matrix,
the right-hand side and the solution vector of (2] are partitioned in p blocks as
follows:

A171 Al,p T b1
A=| ¢ o fa=| b=
Ap’1 Ap’p Lp bp

The iterative step of BGS is:

i—1 P
a:Z(.kH) = A;il (— ZAi7j$§-k+1) - Z Ai,jw§'k) + bi>7 i=1,....,p. (4
j=1 J=i+l

Hence, each iteration of BGS requires to solve p systems of linear equations of
the form A; ;x; = z;. Depending on the sizes of the matrices A; ;, such systems
may be solved using direct or iterative methods.

2.2 An Algorithm for the Optimization of w in SOR

In this section we briefly describe an algorithm for the optimization of the rela-
xation parameter w of SOR. The algorithm does not assume any special property
on the matrix of the linear system and searches the optimum w in the interval
[0, 2].

The algorithm is based on estimations of the convergence factor (modulus
of the sub-dominant eigenvalue of the iteration matrix). After each iteration k
such that the last two iterations have been performed with the same value of w,
the convergence factor 7 is estimated as:

n= [0 — zFE-2)|
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Stabilization of 7 is monitored and it is assumed that a good estimate has been
achieved when the relative difference in 7j/(1 — 7) is smaller than or equal to a
given threshold parameter TOLNI three consecutive times. For a given w, except
w = 1, for which no limit is imposed, a maximum of M = max{MAXITEST,
est/ RATIOETAST} iterations are allocated for the stabilization of 7/(1 — 7)),
where est is the number of iterations required for the stabilization of 7/(1 — 7)
for w = 1. If after M iterations 7/(1 — 7) has not been stabilized, SOR is
assumed not to converge for the current w. Selection of appropriate values for
TOLNI is a delicate matter. If TOLNI is chosen too large an erroneous estimate
of the convergence factor may result and the optimization method may become
confused. If TOLNI is chosen too small non-convergence may be assumed when
the method converges but 7/(1—1) takes a large number of iterations to stabilize.
Selection of values for MAXITEST and RATIOETAST also involves a tradeoff.
If the resulting M is too small, non-convergence may be assumed erroneously.
If the resulting M is too large, iterations may be wasted for a bad w. After
some experimentation we found TOLNI = 0.0001, MAXITEST = 150, and
RATIOETAST = 5 to be appropriate choices.

The algorithm starts with w = 1 and, while the estimate for 7 decreases, ma-
kes a scanning in the interval [1, 2] taking increments for w of 0.1. If a minimum
for n is bracketed, a golden search (see, for instance, [12]) is initiated. If for an
w it is found that the method does not converge, the increment for w is divided
by 10 and the search continues to the right starting from the last w for which
the method converged. This process is repeated till the increment for w is 0.001
(the minimum allowed). If the estimate for 7 for w > 1 is found to increase a
similar scanning is made to the left in the interval [0,1]. At any point of the
algorithm, the best w is recorded and used till convergence or the maximum
number of allowed iterations is reached when the algorithm becomes “lost”. The
complete algorithm is implemented using an automaton with 13 different states
corresponding to different states of the search. Due to lack of space we cannot
give a precise description of the automaton, but only highlight the main ideas
on which it is based.

3 Convergence

—Q7 is a singular M-matrix and it is well known that SOR converges for
—QTm = 0 (and, therefore, for (0)) if 0 < w < 1 [15, Theorem 3.17]. We
prove next that if X is generated breadth-first and the first state and the last
one are exchanged, convergence of GS when solving () is also guaranteed.

First we briefly describe breadth-first generation. The initial state is put in
an empty FIFO queue. From that point, the generation process continues by
taking a state from the queue, generating all its successors and putting in the
queue the successors not previously generated. The generation process finishes
when the queue becomes empty.

Given the n x n matrix A, its associated directed graph I'(A) = (V, E) is
defined by a set of vertices V.= {1,...,n} and a set of edges E = {(i,j) €
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Vla;; # 0}. A sequence of vertices o = (ig,%1,...,4,10) is called a cycle of
rA)if ij # i, J#k, 0L 4,k <1 and, (ik,i(k+1) mod (l+1)) ek, 0<k<I
The cycle is said to be monotone increasing if 79 < 41 < ... < 7; and it is said to
be monotone decreasing if ig > iy > ... >4 [1.

Theorem 1. Let Q be the infinitesimal generator of a finite and irreducible
CTMC obtained by generating the CTMC breadth-first and exchanging the first
and last states. Forward] Gauss-Seidel converges for the linear system Q7w = 0
for each initial guess 7(9).

Proof. Let I'(Q) = (V, E) be the directed graph associated to @, infinitesimal
generator of X, and let 7, = n be the index of the last state of X. Also, let
in—1 be any state with (i,—1,4,) € E. Because of irreducibility of @, some state
in—1 exists. More generally, since X is generated breadth-first, each state i; has
a predecessor which was generated before it. Such a precedessor may be i, (the
state from which X is generated) or 4;_1 < 4;. Then, it is clear that a cycle

(Bny Bhey+ - vy in—2ydn—1,1,) With 41 < i;, 1 <k <l < n can be formed in I'(Q).
Such a cycle becomes (in,in_1,0n_2,.--,ik,in) in I'(QT), which is monotone
decreasing. Then [I, Corollary 1], forward Gauss-Seidel converges for solving
Q77 =0 for each w(®. a

Of course, with 7(®) = 0 the method will converge to 0, a trivial solution
of the linear system which is not of interest. Thus, we should start with any
w0 > 0.

Regarding BGS when applied to solve ([ll), it is known that there always
exists a convergent block splitting for QT provided that an appropriate ordering
of the states is used [§].

As convergence test we require the relative variation on SSRR to be smaller
than or equal to a specified tolerance e three consecutive times. The rationale
for this test is that it takes into account only “important” components of the
solution vector.

4 Numerical Results

In this section we compare the performance of the numerical methods to solve
(@) using two examples. The first example is a model with failure and repair
transitions and immediate detection of component failures; the second example
is a model with failure and repair transitions and K-Erlang intertests time of
spare components.

For all methods, the relative tolerance for convergence is taken e = 1 x 1078
and a maximum of 100,000 iterations is allowed. In all cases, the CTMC is
generated breadth-first and, when the GS and SOR methods (SOR reverts to
GS when it cannot find an appropriate w # 1) are used for the solution of (),

! The method we have called Gauss-Seidel should be more properly called forward
Gauss-Seidel.
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the first state (state with all components unfailed) is exchanged with the last
generated state so that convergence of GS is guaranteed (Theorem[d]). CPU times
have been all measured on a Ultra 1 SPARC workstation.

The first example is the distributed fault-tolerant database system depicted
in Fig. 1 The system includes two processors, two controllers and three disk
clusters, each with four disks. When both processors are unfailed, one of them
is in the active state and the other in the spare state. Similarly, when both
controllers are unfailed, one of them is active and the other spare. The system is
operational if at least one processor, one controller and three disks of each cluster
are unfailed. Processors, controllers and disks fail with constant rates 2 x 1072,
2 x 107% and 3 x 10~°, respectively. Spare components fail with rate 0.2, where
A is the failure rate of the active component. There are two failure modes for
processors: “soft” mode, which occurs with probability 0.8, and “hard” mode,
which occurs with probability 0.2. Soft failures are recovered by an operator
restart, while hard failures require hardware repair. Coverage is assumed perfect
for all failures except those of the controllers, for which the coverage probability
is C. Uncovered controller failures are propagated to two failure free disks of
a randomly chosen cluster. Processor restarts are performed by an unlimited
number of repairmen. There is only one repairman who gives preemptive priority
first to disks, next to controllers, and last to processors in hard failure mode.
Failed components with the same priority are taken at random for repair. Repair
rates for processors in soft and hard failure mode are, respectively, 0.5 and 0.2.
Controllers and disks are repaired with rates 0.5 and 1, respectively. Components
continue to fail when the system is down. The measure of interest is the steady-
state unavailability (UA), a particular case of the SSRR generic measure. The
generated CTMC has 2,250 states and 19,290 transitions. Four values for the
coverage probability are considered: C' = 0.9, 0.99, 0.999, and 0.9999. For this
example we only experimented with GS and SOR. The CPU time required for
the generation of the model was 0.263 s.

P P processors

CcO J controllers

D @ -

Fig. 1. Distributed fault-tolerant database system
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In Table [1] we show the number of iterations and CPU times in seconds for
the first example. The GS method is the faster. SOR requires the same number
of iterations to achieve convergence as GS because the convergence is so fast that
it is achieved before any adjustment on w can be done. The time per iteration
for SOR is slightly greater than for GS.

Table 1. Number of iterations under, respectively, GS and SOR, itas, itsor, CPU time
in seconds under, respectively, GS and SOR, tas, tsor, and UA for the first example

C  itas tas ilsor tsor UA

0.9 20 0.097 20 0.12 4.054 x 107°
0.99 19 0.094 19 0.12 4.461 x 1076
0.999 19 0.094 19 0.12 8537 x 107"
0.9999 19 0.094 19 0.12 4.929 x 1077

The system considered in the second example is exactly the same as the
system of the first example, with the only difference that spare processors and
controllers are tested with deterministic intertests times T approximated by a
K-Erlang distribution with expected value T with K large enough to make the
approximation error small. The measure of interest is again the steady-state
unavailability UA. It is clear that the greater T' the greater UA. Intuitively, the
fact that faulty spare units are not immediately scheduled for repair “increases”
the repair times of such units and so increases UA. Then, only values for the
intertests time not much greater than the average repair times of the components
are reasonable choices. Since the minimum repair rate is 0.2, we consider the
following five values for 7: 100, 10, 1, 0.1, and 0.01. For the sake of brevity, we
will give only results for a coverage probability C equal to 0.99. The value of K
is chosen as the minimum value which makes the relative difference between UA
for two consecutive K’s smaller than or equal to 5 x 10~%. In Table [2 we show,
for each value of T', the number of Erlang stages K, the number of states and
transitions of the CTMC X and its generation time.

Table 2. Number of Erlang stages K, number of states, number of transitions and
generation time ¢z in seconds for the second example and C' = 0.99

T K states transitions tg

0.01 3 12,000 125,766 1.98
0.1 3 12,000 125,766 1.98
1 6 24,000 251,532 4.14
10 9 36,000 377,298 6.36
100 25 100,000 1,048,050 18.7
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The state descriptions of the second example have a component ¢, 1 < ¢ < K
used to indicate the phase of the K-FErlang distribution. For BGS, the blocks are
chosen to include all states which only differ in the value of the state variable ¢.
In addition, states within each block are sorted following increasing values of ¢
(from 1 to K). With that ordering, the diagonal matrices A;; of BGS have the
form:

qm,m 0 ce 0 dn,m
dm,m+1 m+1,m+1 0 - 0
dm+1,m+2 gdm+2,m+2 .- 0
0 s n—2,n—1 4n—1,n—1 0

0 T 0 dn—1,n dnn

Taking advantage of this form, we solve efficiently the linear systems (@) of BGS
using Gaussian elimination with fill-in only in the last column.

The iterative methods considered for the second example are GS, SOR and
BGS. TableBlshows the results obtained. Notice first that although UA tends fast
to the value corresponding to instantaneous detection of failed spare components
(4.461 x 1079), its dependence on T is significant, at least for moderate values of
the intertests time. The performance of the numerical methods is also affected by
T. For large values of T', the GS method performs very well, but its performance
degrades quickly as T decreases. The same type of comments can be made for
the SOR algorithm. Note, however, that as the number of iterations required
by GS increases, the relative reduction in the number of iterations achieved by
SOR is greater. This means that the algorithm used for selecting the relaxation
parameter w is efficient. BGS is the method which requires less iterations. For
T =100 it requires more CPU time than GS and SOR. This is due to the time
required to sort the states as explained before. For T' = 10 BGS is as fast as
GS and SOR, and for smaller values of T" it should be clearly considered as the
method of choice. Overall, BGS seems to be the method of choice for the second
example.

Table 3. Number of iterations under, respectively, GS, SOR and BGS, itcs, itsor,
iteags, CPU time in seconds under, respectively, GS, SOR and BGS, tas, tsor, tBas,
and UA for the second example, C' = 0.99 and several values of T'

T itas  tas itsor tsor ilBas tBas UA
100 21 10.5 21 11.9 10 15.6 6.129 x 10~°
10 31 5.01 31 5.74 11 4.92 4.641 x 10~
1 162 14.8 162 17.5 12 3.15 4.480 x 10~

0.1 1,391 58.4 1,045 51.4 12 1.43 4.463 x 1076
0.01 12,632 527 5,953 284 12 145 4.461 x 107°
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5

Conclusions

In this paper three splitting-based iterative numerical methods for solving linear
systems have been analyzed in the context of two classes of dependability models
and the measure SSRR. A new and robust algorithm to dynamically tune the
relaxation parameter w of SOR has been briefly described. It has been proved
that Gauss-Seidel converges for the solution of the linear system which results
when the steady-state probability vector of an irreducible CTMC has to be
computed if the CTMC is generated breadth-first and the first and last state are
exchanged. Experimental results have shown that the method of choice for each
class of model is different (GS for the first class and BGS for the second class).
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