6 research outputs found

    UE Uplink Power Distribution for M2M over LTE

    Get PDF

    Studies on Mobile Terminal Energy Consumption for LTE and Future 5G

    Get PDF

    Markov mode-multiplexing mode in OFDM outphasing transmitters

    Get PDF
    Abstract Outphasing transmitters have been explored to study the trade-off between linearity and efficiency. The outphasing technique enhances efficiency by operating two amplifiers at lower output amplitudes, using two constant envelope signals. Their major drawback is the inherent sensitivity to gain and phase imbalances between the two amplifier branches. Another important issue is related to the degradation of efficiency, especially in isolated combiners. This paper presents a Statistical Markov-Chain Mode-Multiplexing (MM) transmitter which combines features of the MM and Reverse MM-LINC. Commercial analog devices and a digital platform for signal processing purposes are used to test the performance with an orthogonal frequency multiplexing modulation (OFDM), which is one of the most used modulation schemes in wireless communication systems

    Wide Bandgap Based Devices

    Get PDF
    Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits
    corecore