5,257 research outputs found

    Randomly Spread CDMA: Asymptotics via Statistical Physics

    Full text link
    This paper studies randomly spread code-division multiple access (CDMA) and multiuser detection in the large-system limit using the replica method developed in statistical physics. Arbitrary input distributions and flat fading are considered. A generic multiuser detector in the form of the posterior mean estimator is applied before single-user decoding. The generic detector can be particularized to the matched filter, decorrelator, linear MMSE detector, the jointly or the individually optimal detector, and others. It is found that the detection output for each user, although in general asymptotically non-Gaussian conditioned on the transmitted symbol, converges as the number of users go to infinity to a deterministic function of a "hidden" Gaussian statistic independent of the interferers. Thus the multiuser channel can be decoupled: Each user experiences an equivalent single-user Gaussian channel, whose signal-to-noise ratio suffers a degradation due to the multiple-access interference. The uncoded error performance (e.g., symbol-error-rate) and the mutual information can then be fully characterized using the degradation factor, also known as the multiuser efficiency, which can be obtained by solving a pair of coupled fixed-point equations identified in this paper. Based on a general linear vector channel model, the results are also applicable to MIMO channels such as in multiantenna systems.Comment: To be published in IEEE Transactions on Information Theor

    On the Capacity of Multilevel NAND Flash Memory Channels

    Full text link
    In this paper, we initiate a first information-theoretic study on multilevel NAND flash memory channels with intercell interference. More specifically, for a multilevel NAND flash memory channel under mild assumptions, we first prove that such a channel is indecomposable and it features asymptotic equipartition property; we then further prove that stationary processes achieve its information capacity, and consequently, as its order tends to infinity, its Markov capacity converges to its information capacity; eventually, we establish that its operational capacity is equal to its information capacity. Our results suggest that it is highly plausible to apply the ideas and techniques in the computation of the capacity of finite-state channels, which are relatively better explored, to that of the capacity of multilevel NAND flash memory channels.Comment: Submitted to IEEE Transactions on Information Theor

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Capacity Analysis for Gaussian and Discrete Memoryless Interference Networks

    Get PDF
    Interference is an important issue for wireless communication systems where multiple uncoordinated users try to access to a common medium. The problem is even more crucial for next-generation cellular networks where frequency reuse becomes ever more intense, leading to more closely placed co-channel cells. This thesis describes our attempt to understand the impact of interference on communication performance as well as optimal ways to handle interference. From the theoretical point of view, we examine how interference affects the fundamental performance limits, and provide insights on how interference should be treated for various channel models under different operating conditions. From the practical design point of view, we provide solutions to improve the system performance under unknown interference using multiple independent receptions of the same information. For the simple two-user Gaussian interference channel, we establish that the simple Frequency Division Multiplexing (FDM) technique suffices to provide the optimal sum- rate within the largest computable subregion of the general achievable rate region for a certain interference range. For the two-user discrete memoryless interference channels, we characterize different interference regimes as well as the corresponding capacity results. They include one- sided weak interference and mixed interference conditions. The sum-rate capacities are derived in both cases. The conditions, capacity expressions, as well as the capacity achieving schemes are analogous to those of the Gaussian channel model. The study also leads to new outer bounds that can be used to resolve the capacities of several new discrete memoryless interference channels. A three-user interference up-link transmission model is introduced. By examining how interference affects the behavior of the performance limits, we capture the differences and similarities between the traditional two-user channel model and the channel model with more than two users. If the interference is very strong, the capacity region is just a simple extension of the two-user case. For the strong interference case, a line segment on the boundary of the capacity region is attained. When there are links with weak interference, the performance limits behave very differently from that of the two-user case: there is no single case that is found of which treating interference as noise is optimal. In particular, for a subclass of Gaussian channels with mixed interference, a boundary point of the capacity region is determined. For the Gaussian channel with weak interference, sum capacities are obtained under various channel coefficients and power constraint conditions. The optimalities in all the cases are obtained by decoding part of the interference. Finally, we investigate a topic that has practical ramifications in real communication systems. We consider in particular a diversity reception system where independently copies of low density parity check (LDPC) coded signals are received. Relying only on non-coherent reception in a highly dynamic environment with unknown interference, soft-decision combining is achieved whose performance is shown to improve significantly over existing approaches that rely on hard decision combining

    Wiretap and Gelfand-Pinsker Channels Analogy and its Applications

    Full text link
    An analogy framework between wiretap channels (WTCs) and state-dependent point-to-point channels with non-causal encoder channel state information (referred to as Gelfand-Pinker channels (GPCs)) is proposed. A good sequence of stealth-wiretap codes is shown to induce a good sequence of codes for a corresponding GPC. Consequently, the framework enables exploiting existing results for GPCs to produce converse proofs for their wiretap analogs. The analogy readily extends to multiuser broadcasting scenarios, encompassing broadcast channels (BCs) with deterministic components, degradation ordering between users, and BCs with cooperative receivers. Given a wiretap BC (WTBC) with two receivers and one eavesdropper, an analogous Gelfand-Pinsker BC (GPBC) is constructed by converting the eavesdropper's observation sequence into a state sequence with an appropriate product distribution (induced by the stealth-wiretap code for the WTBC), and non-causally revealing the states to the encoder. The transition matrix of the state-dependent GPBC is extracted from WTBC's transition law, with the eavesdropper's output playing the role of the channel state. Past capacity results for the semi-deterministic (SD) GPBC and the physically-degraded (PD) GPBC with an informed receiver are leveraged to furnish analogy-based converse proofs for the analogous WTBC setups. This characterizes the secrecy-capacity regions of the SD-WTBC and the PD-WTBC, in which the stronger receiver also observes the eavesdropper's channel output. These derivations exemplify how the wiretap-GP analogy enables translating results on one problem into advances in the study of the other
    • …
    corecore