103 research outputs found

    Ship targets feature extraction with GNSS-based passive radar via ISAR approaches. Preliminary experimental study

    Get PDF
    This paper focuses on a passive radar system based on Global Navigation Satellite Systems for maritime surveillance. While in the past the capability of this technology to detect ship targets at sea was proved, despite the low EIRP level of the GNSS, the objective of this paper is investigating the potential of the system to extract information concerning the detected target characteristics. An experimental study is here provided, showing that the Doppler gradient observed for ship targets of interest can be exploited making use of ISAR approaches for extracting ship features to be exploited in target recognition procedures

    Joint detection and localization of vessels at sea with a GNSS-Based multistatic radar

    Get PDF
    This paper addresses the exploitation of global navigation satellite systems as opportunistic sources for the joint detection and localization of vessels at sea in a passive multistatic radar system. A single receiver mounted on a proper platform (e.g., a moored buoy) can collect the signals emitted by multiple navigation satellites and reflected from ship targets of interest. This paper puts forward a single-stage approach to jointly detect and localize the ship targets by making use of long integration times (tens of seconds) and properly exploiting the spatial diversity offered by such a configuration. A proper strategy is defined to form a long-time and multistatic range and Doppler (RD) map, where the total target power can be reinforced with respect to, in turn, the case in which the RD map is obtained over a short dwell and the case in which a single transmitter is employed. The exploitation of both the long integration time and the multiple transmitters can greatly enhance the performance of the system, allowing counteracting the low-power budget provided by the considered sources representing the main bottleneck of this technology. Moreover, the proposed single-stage approach can reach superior detection performance than a conventional two-stage process where peripheral decisions are taken at each bistatic link and subsequently the localization is achieved by multilateration methods. Theoretical and simulated performance analysis is proposed and also validated by means of experimental results considering Galileo transmitters and different types of targets of opportunity in different scenarios. Obtained results prove the effectiveness of the proposed method to provide detection and localization of ship targets of interest

    GNSS-based passive radar techniques for maritime surveillance

    Get PDF
    The improvement of maritime traffic safety and security is a subject of growing interest, since the traffic is constantly increasing. In fact, a large number of human activities take place in maritime domain, varying from cruise and trading ships up to vessels involved in nefarious activities such as piracy, human smuggling or terrorist actions. The systems based on Automatic Identification System (AIS) transponder cannot cope with non-cooperative or non-equipped vessels that instead can be detected, tracked and identified by means of radar system. In particular, passive bistatic radar (PBR) systems can perform these tasks without a dedicated transmitter, since they exploit illuminators of opportunity as transmitters. The lack of a dedicated transmitter makes such systems low cost and suitable to be employed in areas where active sensors cannot be placed such as, for example, marine protected areas. Innovative solutions based on terrestrial transmitters have been considered in order to increase maritime safety and security, but these kinds of sources cannot guarantee a global coverage, such as in open sea. To overcome this problem, the exploitation of global navigation satellites system (GNSS) as transmitters of opportunity is a prospective solution. The global, reliable and persistent nature of these sources makes them potentially able to guarantee the permanent monitoring of both coastal and open sea areas. To this aim, this thesis addresses the exploitation of Global Navigation Satellite Systems (GNSS) as transmitters of opportunity in passive bistatic radar (PBR) systems for maritime surveillance. The main limitation of this technology is the restricted power budget provided by navigation satellites, which makes it necessary to define innovative moving target detection techniques specifically tailored for the system under consideration. For this reason, this thesis puts forward long integration time techniques able to collect the signal energy over long time intervals (tens of seconds), allowing the retrieval of suitable levels of signal-to-disturbance ratios for detection purposes. The feasibility of this novel application is firstly investigated in a bistatic system configuration. A long integration time moving target detection technique working in bistatic range&Doppler plane is proposed and its effectiveness is proved against synthetic and experimental datasets. Subsequently the exploitation of multiple transmitters for the joint detection and localization of vessels at sea is also investigated. A single-stage approach to jointly detect and localize the ship targets by making use of long integration times (tens of seconds) and properly exploiting the spatial diversity offered by such a configuration is proposed. Furthermore, the potential of the system to extract information concerning the detected target characteristics for further target classification is assessed

    Experimental demonstration of ship target detection in GNSS-based passive radar combining target motion compensation and track-before-detect strategies

    Get PDF
    This work discusses methods and experimental results on passive radar detection of moving ships using navigation satellites as transmitters of opportunity. The reported study highlights as the adoption of proper strategies combining target motion compensation and track-before-detect methods to achieve long time integration can be fruitfully exploited in GNSS-based passive radar for the detection of maritime targets. The proposed detection strategy reduces the sensitivity of long-time integration methods to the adopted motion models and can save the computational complexity, making it appealing for real-time implementations. Experimental results obtained in three different scenarios (port operations, navigation in open area, and river shipping) comprising maritime targets belonging to different classes show as this combined approach can be employed with success in several operative scenarios of practical interest for this technology

    Application of track-before-detect techniques in GNSS-based passive radar for maritime surveillance

    Get PDF
    GNSS-based passive radar has been recently proved able to enable moving target detection in maritime surveillance applications. The main restriction lies in the low Equivalent Isotropic Radiated Power (EIRP) level of navigation satellites. Extending the integration times with proper target motion compensation has been shown to be a viable solution to improve ship detectability, but this involves computational complexity and increasing sensitivity to motion model mismatches. In this work, we consider the application of a Track-Before-Detect (TBD) method to considerably increase the integration time (and therefore the detection capability) at the same time keeping the computational complexity affordable by practical systems. Dynamic programming TBD algorithms have been specialized for the considered framework and tested against experimental dataset. The obtained results show the effectiveness of this approach to improve the detection capability of the system despite the restricted power budget

    Target localization based on bistatic T/R pair selection in GNSS-based multistatic radar system

    Get PDF
    To cope with the increasingly complex electromagnetic environment, multistatic radar systems, especially the passive multistatic radar, are becoming a trend of future radar development due to their advantages in anti-electronic jam, anti-destruction properties, and no electromagnetic pollution. However, one problem with this multi-source network is that it brings a huge amount of information and leads to considerable computational load. Aiming at the problem, this paper introduces the idea of selecting external illuminators in the multistatic passive radar system. Its essence is to optimize the configuration of multistatic T/R pairs. Based on this, this paper respectively proposes two multi-source optimization algorithms from the perspective of resolution unit and resolution capability, the Covariance Matrix Fusion Method and Convex Hull Optimization Method, and then uses a Global Navigation Satellite System (GNSS) as an external illuminator to verify the algorithms. The experimental results show that the two optimization methods significantly improve the accuracy of multistatic positioning, and obtain a more reasonable use of system resources. To evaluate the algorithm performance under large number of transmitting/receiving stations, further simulation was conducted, in which a combination of the two algorithms were applied and the combined algorithm has shown its effectiveness in minimize the computational load and retain the target localization precision at the same time

    Computationally effective range migration compensation in PCL systems for maritime surveillance

    Get PDF
    In this paper, we consider the possibility of extending the coherent processing interval (CPI) as a way to improve target detection capability in passive radars for maritime surveillance applications. Despite the low velocity of the considered targets, range walk effects could limit the performance of the system when long CPIs are considered. To overcome these limitations while keeping the computational load controlled, we resort to a sub-optimal implementation of the Keystone Transform (KT), based on Lagrange polynomial interpolation, recently presented by the authors and successfully applied against aerial targets. Following those promising results, we extend the proposed approach to a coastal surveillance scenario. In the considered case, since longer CPI values are used, the proposed strategy appears to be even more attractive with respect to a conventional KT implementation based on the Chirp-Z Transform interpolation. In fact, comparable detection performance are obtained with a remarkable computational load saving. In detail, the effectiveness of the proposed approach is demonstrated against experimental data provided by Leonardo S.p.A., using a DVB-T based passive radar

    Maritime moving target localization using passive GNSS-based multistatic radar

    Get PDF

    Space-based Global Maritime Surveillance. Part I: Satellite Technologies

    Full text link
    Maritime surveillance (MS) is crucial for search and rescue operations, fishery monitoring, pollution control, law enforcement, migration monitoring, and national security policies. Since the early days of seafaring, MS has been a critical task for providing security in human coexistence. Several generations of sensors providing detailed maritime information have become available for large offshore areas in real time: maritime radar sensors in the 1950s and the automatic identification system (AIS) in the 1990s among them. However, ground-based maritime radars and AIS data do not always provide a comprehensive and seamless coverage of the entire maritime space. Therefore, the exploitation of space-based sensor technologies installed on satellites orbiting around the Earth, such as satellite AIS data, synthetic aperture radar, optical sensors, and global navigation satellite systems reflectometry, becomes crucial for MS and to complement the existing terrestrial technologies. In the first part of this work, we provide an overview of the main available space-based sensors technologies and present the advantages and limitations of each technology in the scope of MS. The second part, related to artificial intelligence, signal processing and data fusion techniques, is provided in a companion paper, titled: "Space-based Global Maritime Surveillance. Part II: Artificial Intelligence and Data Fusion Techniques" [1].Comment: This paper has been submitted to IEEE Aerospace and Electronic Systems Magazin

    Target kinematic state estimation with passive multistatic radar

    Get PDF
    • …
    corecore