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Abstract: To cope with the increasingly complex electromagnetic environment, multistatic radar
systems, especially the passive multistatic radar, are becoming a trend of future radar development
due to their advantages in anti-electronic jam, anti-destruction properties, and no electromagnetic
pollution. However, one problem with this multi-source network is that it brings a huge amount of
information and leads to considerable computational load. Aiming at the problem, this paper intro-
duces the idea of selecting external illuminators in the multistatic passive radar system. Its essence is
to optimize the configuration of multistatic T/R pairs. Based on this, this paper respectively proposes
two multi-source optimization algorithms from the perspective of resolution unit and resolution
capability, the Covariance Matrix Fusion Method and Convex Hull Optimization Method, and then
uses a Global Navigation Satellite System (GNSS) as an external illuminator to verify the algorithms.
The experimental results show that the two optimization methods significantly improve the accuracy
of multistatic positioning, and obtain a more reasonable use of system resources. To evaluate the
algorithm performance under large number of transmitting/receiving stations, further simulation
was conducted, in which a combination of the two algorithms were applied and the combined
algorithm has shown its effectiveness in minimize the computational load and retain the target
localization precision at the same time.

Keywords: target localization; T/R pair selection; multistatic radar; Covariance Matrix Fusion
Method; Convex Hull Optimization Method

1. Introduction

With the rapid development of science and technology, the modern electromagnetic
environment has become more complex and changeable. Although the monostatic radar is
powerful, it has a single detection of perspective and obtains incomplete information, so it
cannot fight against the complex electromagnetic environment [1]. In response to the com-
plex situation, a number of new concepts and new radar systems have gradually emerged.
Among them, multistatic radar system will be a trend of future radar development.

Currently, the widely studied multistatic radar systems [1–3] include the networked
radar [4,5], bistatic (multistatic) radar [6,7], and distributed MIMO radar [8–10]. Compared
with monostatic radar, multistatic radar has the following advantages [11–13]: (1) It can
detect targets in multiple directions to facilitate target recognition and anti-stealth. (2) Each
transmitter can have different frequency bands and data rates, so it is beneficial to enhance
the anti-jamming capability and reliability of the system. (3) It can increase the target
detection probability and improve the positioning accuracy. (4) The system’s survivability
is stronger, because the local transmitting or receiving abnormality cannot cause the
collapse of the entire system. At present, many relevant studies have been done on the
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multistatic radar [14–18], and they have also been successfully applied in the fields of
strategic indication warning, navigation system, and air traffic control. The representative
research results are the Russian barrier radar [19], Japan’s bistatic radar system for ground
detection [6], and the passive detection and positioning system researched by the British
Defense Research Agency [20].

For the multistatic radar, the use of external illuminators is also a mainstream trend.
On the one hand, with the rapid development of technology, there are many types of exter-
nal illuminators that can be used, such as navigation satellites, communication satellites,
and various ground-based base stations. On the other hand, in the face of an increas-
ingly complex electromagnetic environment, a passive radar has more obvious advantages
than an active radar. All major countries are now developing the wide-area detection
networks combining active and passive radars [21–24]. However, the wide-area detection
network also has a problem, in that it brings a huge amount of information and requires
considerable computing power. For active networks, there is a closed-loop problem of
cognitive transmission and the intelligent processing of receiving signal. For example,
the literature [25] focuses on the joint processing of cognitive transmission and recep-
tion. For passive networks, the problem of selecting external illuminators is introduced.
In essence, both these problems can be transformed into modeling optimization problems
of T/R pairs configuration and system parameters.

This paper aims at the selection of external illuminators in the multistatic radar system
and uses GNSS as the external illuminator. At present, with the continuous improvement of
GNSS, the GNSS-based radar has received widespread attention, and it also has the advan-
tages of all-weather and global coverage, and no extra electromagnetic pollution from the
active radar transmitter. Moreover, for an arbitrary point on Earth, there are more than 30 satel-
lites illuminators at any time. Therefore, many related research works have been conducted
on it, such as target detection [26–28], positioning [29,30], kinematic state estimation [31],
imaging [32,33], etc. The work of this paper is based on the literature [26,27,29].

On the premise that the approximate location of the target is known, this paper pro-
poses two multi-source optimization algorithms from the perspective of resolution unit and
resolution capability: Covariance Matrix Fusion Method and Convex Hull Optimization
Method, and then uses GNSS as an external illuminator to verify the algorithms. GNSS
itself has the accurate positioning capability, so the design of the satellite constellation orbit
is a better geometric configuration for multistatic positioning. On this basis, after adopting
our algorithms, it can achieve more effective passive target positioning.

The remaining arrangements of this paper are as follows: Section 2 briefly explains
positioning method of multistatic radar and analyzes the positioning performance. Sec-
tion 3 introduces the two proposed optimization algorithms in detail. The experimental
simulation results are provided in Section 4. Finally, a conclusion is given in Section 5.

2. Target Localization Scheme with Multistatic Radar
2.1. System Geometry and Positioning Method Description

As shown in Figure 1, a multistatic radar system is composed of more than one
transmitter or receiver or both. A multistatic geometry containing N(N ≥ 3) transmitters
and one receiver can be easily extended to multiple-receiver cases, with all proposed
methods in this paper still effective.

Without the loss of generality, it is assumed that the receiver is located at the coordinate
origin (0,0,0). The positions of target and transmitters are defined as:

Tg = x = (x, y, z)T , (1)

And
Txi = xi = (xi, yi, zi)

T , (2)

where i = 1, . . . , N.
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Figure 1. Geometric structure of the multistatic radar system (for visibility, only three of N bistatic
T/R pairs are illustrated).

The multistatic radar system can be regarded as N bistatic T/R pairs. For visibility,
only three of N bistatic T/R pairs are illustrated in Figure 1. φi is the bistatic angle of
the i−th bistatic radar. Mxi is the bistatic angle bisector of the i−th bistatic radar and the
direction of bistatic positioning error is along the direction of Mxi. Mxi is expressed as:

T1 = Txi − Tg, (3)

T2 = −Tg, (4)

Mxi =
T1

‖T1‖
+

T2

‖T2‖
. (5)

In Figure 1, the sum of the transmitter-target and the target-receiver distances is
defined as the Bistatic Range (BR) [34]. In the bistatic radar system, a BR measurement can
determine an ellipsoid whose focal points are the transmitter and receiver locations, while
in practical cases, usually an elliptical ring is obtained, considering the BR measurement
error. Based on the multiple BR measurements of all T/R pairs, the intersection points of
ellipsoids, or the intersection area of the elliptical rings indicates the target position [35].

At the output of the radar processor for each T/R pair, the BR may be written as:

ri = Di + R0 − Bi, (6)

with Di = ‖xi − x‖ =
√
(xi − x)2 + (yi − y)2 + (zi − z)2, R0 = ‖x‖ =

√
x2 + y2 + z2 and

Bi = ‖xi‖ =
√

x2
i + y2

i + z2
i being the range between the i−th satellite and the target,

the range between the receiver and the target and the baseline between the i−th satellite
and the receiver.

Then, the equation of combining all T/R pairs can be expressed as:

Ax = K + C‖x‖, (7)

where, A is the transmitter position matrix, K is constant vector, and C is the sum of the
radar measured bistatic ranges and baselines, which can be written as:

A =


x1
x2
...

xN


N×3

, K =
1
2


B2

1 − (r1 + B1)
2

B2
2 − (r2 + B2)

2

...
B2

N − (rN + BN)
2


N×1

, C =


r1
r2
...

rN


N×1

+


B1
B2
...

BN


N×1

. (8)
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The solution of (7) is [29]:

x = a +
−baTb∓ b

√
(aTb)2 − (bTb− 1)aTa

bTb− 1
, (9)

with two introduced variables a and b being:

a =
(

AT A
)−1

ATK, (10)

b =
(

AT A
)−1

ATC. (11)

This is the classic multi-lateration principle, and its detailed derivation can be referred
to the literature [29]. As validated in [29], for improving the BR measurement accuracy, the
coherent integration was conducted, ensuring a robust target detection.

2.2. Positioning Performance Analysis

When estimating the accuracy of target positioning value, it is obvious that the po-
sitioning performance is relevant to three factors, the multistatic geometry of the system,
the positioning algorithm processing, as well as the BR measurement errors. In the mul-
tistatic radar system, when there is no positioning error, the intersection of ellipsoids
corresponding to multiple BRs is a point where target is located. However, positioning
errors commonly exist in the practical cases, with the intersection of multiple ellipsoids
extended from a point to an area, and the target position could be any point in the area,
as shown in Figure 2. Obviously, the larger the overlap area, the larger the positioning error.
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In the multistatic radar system, in order to achieve multistatic network information
selection and optimize multistatic positioning, bistatic T/R pairs with good positioning
performance can be selected according to certain criteria. For this purpose, this paper
proposes two algorithms for the selection of external illuminators.

3. Selection Methods of Bistatic T/R Pairs
3.1. Covariance Matrix Fusion Method

The principle of this method is to select m(m < N) bistatic T/R pairs from a multistatic
radar system based on resolution unit, to minimize the overlap area of the elliptical rings,
equivalent to minimizing the positioning error. The presentation diagram of this method is
shown in Figure 3.
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First, the range information is used to construct the covariance matrix ei(i = 1, 2, . . . , N),
which describes the positioning error of the bistatic T/R pair. The matrix E obtained by
the weighted fusion of ei is the inscribed ellipsoid covariance matrix of the overlap area.
The volume of the overlap area is proportional to the determinant of E [36]. So, the criterion
for selecting bistatic T/R pairs is equivalent to optimizing E with the smallest determinant
after the matrix fusion. Next, for easy understanding, we directly construct the inverse
matrix of ei, and express it as follows.

e−1
i =

 0 0 0
0 0 0
0 0 1

∆2
i

, (12)

∆2
i = q1∆2

i1 + q2∆2
i2 + q3∆2

i3, (13)

where ∆i represents the bistatic range measurement error, which is mainly related to the
multistatic geometric configuration, the signal bandwidth and the sampling frequency.
As shown in (13), ∆2

i1 = L2
i , where Li is the modulus of bistatic range vector Mxi.

∆2
i2 = [c/(2Bcos(φi/2))]2 and ∆2

i3 = [c/ fsi]
2, with c being the speed of light (about

3× 108m/s), B being the signal bandwidth, fsi being the sampling frequency of the i−th
satellite signal and qi(i = 1, 2, 3) being the weighting factor.

Equation (12) is obtained in the target local coordinate with the i−th bisector as the Z
axis. Different bistatic geometries correspond to different target local coordinates, hence,
while we conduct the following covariance matrix fusion, the covariance matrix must
be transformed into the same coordinate, defined as the local coordinate. The classic 7-
parameter coordinate rotation method is used (see (A1) (A2) in the Appendix A) to realize
the coordinate transformation, and the i−th covariance matrix in the local coordinate can
be written as:

E−1
i = RT

i ∗ e−1
i ∗ Ri, (14)

with Ri being the i−th rotation matrix from the i−th bistatic coordinate into the local
coordinate. Finally, the optimization problem can be obtained as follows:

argmax
ki

det
(

n
∑

i=1
kiE−1

i

)
s.t. ki =

{
1, i f ki is included in the solution set

0, others
,

(15)

where, ki is the weighting factor.
By solving the above question, the optimal combination of 4, 5, . . . , m bistatic T/R

pairs can be obtained. It can be seen that the method can select the optimal combination of
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a given number of T/R pairs. Although the result may not be the most effective, for the
multistatic radar system, we can use the method to do a reasonable rough selection of
multiple bistatic pairs to reduce the amount of system calculations.

3.2. Convex Hull Optimization Method

Convex hull problem is a classic problem in the computer geometry. In a real vector
space V, for a given set X, the intersection S of all convex sets containing X is called the
convex hull of X [37]. The convex hull concept provides another algorithm to solve the
problem in the paper.

The main idea to formulate the T/R pair selection criteria as a convex hull problem
bases on resolution capability. First, we define a vector vi for the i−th bistatic T/R pair
to represent its capability of the range resolution. The vector is along the direction of

Mxi and its modulus value is 1/
√

∆2
i , where ∆2

i being the i−th bistatic range variance as
discussed in the last subsection. Pi, (i = 1, 2, . . . , N) represent the endpoints of all vectors
vi, and let the point set Pj = {Pi,−Pi}, (j = 1, 2, . . . , 2N), then, the smallest convex polygon
(polyhedron) that encloses all vertices in Pj is called the convex hull of Pj. On 2-D plane,
minimizing the positioning error is equivalent to maximizing the area of the polygon
expanded by the vector endpoints. Correspondingly, in 3-D space, it is equivalent to
maximizing the volume of the polyhedron with the vector endpoints expanded.

Figure 4 is demonstrated in 2-D for visualization, and the target localization problem
of this paper is solved in 3-D. The red dot in the figure indicates starting point of vi, and the
black dots and the gray dots indicate endpoints, which are also the data set of the convex
hull method. The dotted arrow is to more intuitively reflect the modulus of vi, that is,
to reflect positioning error of each bistatic T/R pair. It can be seen that the smaller the
positioning error, the more likely it is to be selected as vertex of the convex hull. These
vertices (the black dots in Figure 4) form the selected bistatic T/R pair combination.
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Figure 4. Schematic diagram of 2-D convex hull.

In 3-D space, the specific coordinate position of Pi = (xi, yi, zi), (i = 1, 2, . . . , N) is
calculated as follows: 

xi =
sinϕcosθ1√

∆2
i

yi =
sinϕsinθ1√

∆2
i

zi =
cosϕ√

∆2
i

and


xi = −

sinϕsinθ2√
∆2

i

yi =
sinϕcosθ2√

∆2
i

zi =
cosϕ√

∆2
i

(16)

where ϕ is the angle between ∆2
i and the Z axis, θ1 is the angle between the projection of

∆2
i on the XOY plane and the positive half axis of X axis, and θ2 is the angle between the

projection of ∆2
i on the XOY plane and the positive half axis of Y axis.

The presentation diagram of the proposed method is shown in Figure 5, and the
specific description is as follows.
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First, we define a new vector that takes Pi as the starting points and Pq = {Pi,−Pi},
(q = 1, 2, . . . , 2N and q 6= i) as the endpoints. Next, if there is a vector λi that satisfies (17),
then, when λi = 0, it indicates that the i−th bistatic vector is not on the convex hull, so its
corresponding T/R pair is not selected. When λi 6= 0, the i−th bistatic T/R pair is selected.
In this way, we get the optimal combination of bistatic T/R pairs. argmax

λi

‖λi‖2

s.t. λi
(

Pq − Pi
)
≥ 0

. (17)

The computational complexity of the proposed method is O(n2), and n is the number
of bistatic T/R pairs. Compared with other 3-D convex hull algorithms, the computa-
tional complexity of proposed method is equivalent to that of the incremental method
(O(n2)), and is less than the extreme point method (O(n4)) and the extreme edge method
(O(n3)) [38]. The proposed method is also suitable for the calculation of convex hull of
arbitrary dimensions.

4. Simulation and Experimental Results

An experiment is conducted to evaluate the performance of Covariance Matrix Fusion
Method (CMF method) and Convex Hull Optimization Method (CHO method). They are
verified through maritime target positioning experiment using the GNSS-based passive
multistatic radar.

4.1. Experimental Scene and Conditions

The experimental scenario and a GNSS passive receiver are shown in Figure 6.
The multistatic radar system is formed with multiple GNSS transmitters of opportunity,
including GPS L1, GLONASS G1, and Galileo E5a and E5b. The passive receiver is installed
to receive GNSS signals in the east of Portsmouth harbor in the UK, and it has two receiv-
ing channels. One receives the direct wave signal, and the other receives the target echo
signal. The bandwidth of this receiver can cover the four GNSS bands which are recorded
simultaneously at a sampling rate of 20 MHz. When the large target moves relatively close
to the receiver, it can provide a sufficiently high SNR.

We located a commercial ferry (the “St. Cecilia”) whose length is 77m and beam is
17.2m, as shown in Figure 7. During the experiment, the ferry entered the port at a low
speed, so we can know the time of departure and arrival of the ferry in advance. In addition,
Automatic Identification System (AIS) installed on the ship can record the ferry’s driving
in real time, which provides us with ground reference data for multistatic positioning.
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There are 12 visible satellites during the data acquisition period. All through the
experimental recording, these satellites continuously illuminate the targets. The satellite
geometry topology is shown in Figure 8.
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Table 1. Satellite parameters.

Satellite Azimuth Elevation

1 Galileo-GSAT0206 (PRN30) 63.8~63.1◦ 55.2~54.7◦

2 Galileo-GSAT0211 (PRN02) 40.27~40.33◦ 7.3~6.7◦

3 Glonass-COSMOS2457 314.2~313.6◦ 67.8~68.8◦

4 Glonass-COSMOS2425 42.4~42.1◦ 53.5~52.5◦

5 Glonass-COSMOS2477 317.9~318.1◦ 16.1~16.9◦

6 Glonass-COSMOS2459 305.4~304.7◦ 5.1~4.5◦

7 GPS-BIIR02 (PRN13) 293.2~293.9◦ 66.8~67.6◦

8 GPS-BIIR04 (PRN20) 289.0~288.0◦ 46.4~46.8◦

9 GPS-BIIR05 (PRN28) 118.0~117.1◦ 44.2~44.8◦

10 GPS-BIIF05 (PRN30) 63.7~63.5◦ 52.6~51.8◦

11 GPS-BIIRM04 (PRN15) 288.1~288.3◦ 35.4~36.2◦

12 GPS-BIIRM06 (PRN07) 58.1~58.3◦ 19.6~18.9◦

4.2. Experimental Results of CMF Method

The selection of bistatic T/R pairs is equivalent to select visible satellites in the GNSS-
based passive multistatic radar. Therefore, CMF method is used to select the optimal
combinations of 4, 5, . . . , 11 satellites from 12 visible satellites. Using AIS data as a
reference, we calculate Root Mean Square (RMS) of the optimal combinations. At the same
time, the theoretical error is calculated as the reference for the upper limit of positioning
performance. The specific calculation process will not be repeated in this paper, which has
been demonstrated in literature [29]. And the error curves of CMF method are shown in
Figure 9.
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As shown in Figure 9, the positioning error is still in the trend: the measured RMS
and the theoretical result both decrease as the number of satellites increases. It is not
difficult to see that there are still some small fluctuations in the measured RMS curve in
the figure. The reason for this phenomenon is that when observing complex targets such
as aircrafts and ferries, these targets can be regarded as a collection of many independent
scatterers. When scatterers are unstable, a small change on the viewing angle will cause
the echoes synthesized by each scatterer to produce larger fluctuations, thereby affecting
the positioning effect of these complex targets.

In addition, in order to evaluate the performance of CMF method more intuitively,
we also compared the measured RMS and the theoretical results before and after selecting
satellites (Figures 10 and 11), respectively. From Figures 10 and 11, the measured RMS
curve and the theoretical result curve after selecting satellites by CMF method are obviously
lower than those before selection, that is, the positioning error is significantly reduced.
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It shows that positioning accuracy has been improved after selecting satellites, and shows
the correctness of the proposed method.
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4.3. Experimental Results of CHO Method

We use the CHO method to select an optimal combination of 6 satellites from 12 visible
satellites. The positioning results are shown in Figure 12c and Table 2.
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Table 2. Positioning error analysis for target by the CHO method (6 satellites).

The Measured RMS The Theoretical Results

Results without selecting/m 65.7517 55.3471
Results with CMF method/m 57.3979 46.3356
Results with CHO method/m 50.8885 41.4248

In Figure 12, it is ‘North Up’, so East is to the right and the blue solid line is the AIS
track used as a reference, and the red “×” indicates all target positions obtained using a
certain number of satellites, and the marking step is 1s.

In contrast, the red “×” marks are more condensed around the solid blue line
in Figure 12c, and it shows that the positioning result obtained by CHO method is more ac-
curate. In more detail, we can see Table 2. Under the same number of satellites (6 satellites),
the measured RMS and the theoretical result of CHO method is reduced by 14.8632m and
13.9223m, respectively, and optimizations by CMF method are reduced by 8.3538m and
9.0115m, respectively. Moreover, before selecting satellites, the difference between the
measured RMS and the theoretical result of 6 satellites is 10.4446m. After the CHO method
selection, the difference between them is 9.4637m. It means the positioning accuracy has
been improved. Finally, comparing Tables 2 and 3, we can see that the error of CHO method
is even smaller than that of 7, 8, 9, and 10 satellites without selecting. Through comparison
of various aspects, it is concluded that CHO method has good satellite selection capabilities.

Table 3. Positioning error analysis for target without selecting.

Satellites 4 5 6 7 8 9 10 11 12

RMS/m 94.7684 72.1672 65.7517 59.9241 54.1715 51.1194 51.1783 48.2472 43.6705
Theoretical/m 93.8474 60.5318 55.3471 47.4038 44.1906 41.9754 41.6998 40.3073 35.8506

4.4. The Case of a Larger Number of Satellites

To further specify the selection performance of proposed methods in the case of more
transmitters, further simulation have been conducted. The simulation parameters are
set most practically, using the ephemeris of all the four GNSS constellations (BDS, GPS,
GLONASS, and Galileo). In the simulation, the positions of 55 satellites used are shown in
Figure 13.
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The bistatic range variance of each T/R pair is expressed as ∆2
i = (Q/cos( φi

2 ))
2
, where

Q is the coefficient. The selection results of the CHO method are shown in Table 4.
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Table 4. CHO method selection results.

Q 2 5 10 15 20

Number of CHO selected satellites 31 31 31 31 31
RMS @ CHO method /m 1.52 3.81 7.61 11.42 15.20
RMS @ all 55 satellites /m 1.46 3.65 7.30 10.93 14.57

RMS @ random selection of 31 sat/m 1.93 5.09 9.34 14.10 19.90

From Table 4, 31 satellites are selected from 55 satellites using CHO method, which
greatly reduces the amount of calculation for multistatic satellite signal processing. At the
same time, the positioning error of this method is equivalent to that of 55 satellites, which
is significantly smaller than the error of randomly selecting 31 satellites, and it further
illustrates the effectiveness of this method for selecting satellites. However, it also shows
that changing the range measurement error does not change the satellite selection results.
This is because when the level of the range measurement error is equivalent, once the
multistatic geometry and the system parameters are certain, the number of satellites filtered
out are determined.

When the total number of satellites is very large, the number of satellites selected
by CHO method is still a lot. At this time, we can use the CMF method to select again,
and can also select the specified number of satellites according to the actual computing
power. When Q = 15, the selection result of the combination of CHO and CMF is shown
in Figure 14.

Remote Sens. 2021, 13, 707 12 of 15 
 

 

From Table 4, 31 satellites are selected from 55 satellites using CHO method, which 

greatly reduces the amount of calculation for multistatic satellite signal processing. At the 

same time, the positioning error of this method is equivalent to that of 55 satellites, which 

is significantly smaller than the error of randomly selecting 31 satellites, and it further 

illustrates the effectiveness of this method for selecting satellites. However, it also shows 

that changing the range measurement error does not change the satellite selection results. 

This is because when the level of the range measurement error is equivalent, once the 

multistatic geometry and the system parameters are certain, the number of satellites fil-

tered out are determined. 

When the total number of satellites is very large, the number of satellites selected by 

CHO method is still a lot. At this time, we can use the CMF method to select again, and 

can also select the specified number of satellites according to the actual computing power. 

When Q = 15, the selection result of the combination of CHO and CMF is shown in Figure 

14. 

 

Figure 14. CMF method selection result. 

4.5. Discussion of the algorithm limitations 

In the last decade, an explosive growth has been witnessed of the GNSS, Starlink, 

and other satellites. This brings opportunities for the passive radars, but an effective se-

lection of satellites also becomes a fundamental issue to be considered. The passive radar 

could not, after all, achieve a real-time processing of all satellite sources. As shown in 

Figure 15, we have summarized the signal processing of the GNSS-based multistatic ra-

dar. The most computational section lies in the two-dimensional coherent integration of 

the range compression and Doppler processing, because of the high sampling frequency 

in the fast-time domain. Hence, the computational burden is approximately proportional 

to the number of the selected satellites.  

 

Figure 15. Schematic diagram of Global Navigation Satellite System (GNSS)-based multistatic radar signal processing. 

Figure 14. CMF method selection result.

4.5. Discussion of the Algorithm Limitations

In the last decade, an explosive growth has been witnessed of the GNSS, Starlink,
and other satellites. This brings opportunities for the passive radars, but an effective
selection of satellites also becomes a fundamental issue to be considered. The passive radar
could not, after all, achieve a real-time processing of all satellite sources. As shown in
Figure 15, we have summarized the signal processing of the GNSS-based multistatic radar.
The most computational section lies in the two-dimensional coherent integration of the
range compression and Doppler processing, because of the high sampling frequency in the
fast-time domain. Hence, the computational burden is approximately proportional to the
number of the selected satellites.
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Based on the above, two algorithms are proposed for the transmitter-selection problem
of the passive radar when they are more than enough. The effectiveness of both algorithms
has been verified by the simulation and experimental results. However, the two methods
have their own advantages and limitations. First, the two methods are under a same
premise that the approximate target position is known, which is generally a target-tracking
mode, however, when the target position deviation is too large, the performance of pro-
posed methods can be affected. Further analysis will be conducted in the follow-up work.

Second, for the CMF method, the positioning accuracy after selection is also limited by
the choice of the covariance matrix construction method and the matrix fusion algorithm.
While for the CHO method, once the multistatic geometry is certain, the number of satellites
filtered out are determined, which lacks the flexibility. Nevertheless, a combination of
the two methods can address this problem, that the CMF could be applied after the CHO
selection.

5. Conclusions

The multistatic radar system is the developmental trend of the radar research. From
a different perspective, the systems composed of more than two receivers or more than
two transmitters have been studied and defined as the netted radar, MIMO radar, or multi-
static radar. With the increasing scale of the system, the consequent problem is the huge
computational load of the signal processing. Therefore, cognitive mechanism needs to be
considered to select the transmitter and receiver pair and to limit the scale of the origin
datasets, but still retain the performance of the multistatic systems.

Therefore, based on the study of the multistatic positioning, this paper proposes two
multi-source selection algorithms to optimize the multistatic target localization precision.
The first method, the CMF method, is a classic multistatic fusion method based on the
ranging covariance matrix. The second, the CHO method, is based on the ranging vector,
which is more commonly used in navigation and positioning optimization. We learn from
it to evaluate the target localization capability of the multistatic radar system.

The theoretical derivations have shown the mechanism of the two methods. To val-
idate the theoretical model, experiments were conducted using GNSS satellites as the
multiple illuminators using one receiver. More than ten satellites were seen in the exper-
imental results, and both algorithms have good selecting capabilities and can retain the
accuracy of multistatic target localization, utilizing a fewer number of satellites. When the
same number of satellites are selected, the CHO method is more effective. However,
in cases of larger number of transmitters or receivers, the two methods can be combined
to achieve a more effective selection, for which the simulation has been conducted with
55 GNSS satellites. From the simulation results, to obtain the same level of localization
precision, at least one third of the computational load can be reduced.

The proposed methods can be extended to any multistatic radar systems, which can
contribute to the practical real-time multistatic radar applications.
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Appendix A

According to the rotation order of the ZXZ axis, we use Euler angles to construct the
rotation matrix Ri:

Ri = R3i ∗ R2i ∗ R1i, (A1)

where, R1i, R2i and R3i are the rotation matrices, and the three rotation angles α, β, τ are
shown in Figure 1.

R1i =

 cosα sinα 0
−sinα cosα 0

0 0 1

, R2i =

 1 0 0
0 cosβ sinβ
0 −sinβ cosβ

, R3i =

 cosτ sinτ 0
−sinτ cosτ 0

0 0 1

, (A2)
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