5,731 research outputs found

    Extension to UML-B Notation and Toolset

    No full text
    The UML-B notation has been created as an attempt to combine the success and ease of use of UML, with the verification and rigorous development capabilities of formal methods. However, the notation currently only supports a basic diagram set. To address this we have, in this project, designed and implemented a set of extensions to the UML-B notation that provide a much fuller software engineering experience, critically making UML-B more appealing to industry partners. These extensions comprise five new diagram types, which are aimed at supplying a broader range of design capabilities, such as conceptual Use-Case design and future integration with the ProB animator tool

    CSP design model and tool support

    Get PDF
    The CSP paradigm is known as a powerful concept for designing and analysing the architectural and behavioural parts of concurrent software. Although the theory of CSP is useful for mathematicians, the programming language occam has been derived from CSP that is useful for any engineering practice. Nowadays, the concept of occam/CSP can be used for almost every object-oriented programming language. This paper describes a tree-based description model and prototype tool that elevates the use of occam/CSP concepts at the design level and performs code generation to Java, C, C++, and machine-readable CSP for the level of implementation. The tree-based description model can be used to browse through the generated source code. The tool is a kind of browser that is able to assist modern workbenches (like Borland Builder, Microsoft Visual C++ and 20-SIM) with coding concurrency. The tool will guide the user through the design trajectory using support messages and several semantic and syntax rule checks. The machine-readable CSP can be read by FDR, enabling more advanced analysis on the design. Early experiments with the prototype tool show that the browser concept, combined with the tree-based description model, enables a user-friendly way to create a design using the CSP concepts and benefits. The design tool is available from our URL, http://www.rt.el.utwente.nl/javapp

    IEEE Standard 1500 Compliance Verification for Embedded Cores

    Get PDF
    Core-based design and reuse are the two key elements for an efficient system-on-chip (SoC) development. Unfortunately, they also introduce new challenges in SoC testing, such as core test reuse and the need of a common test infrastructure working with cores originating from different vendors. The IEEE 1500 Standard for Embedded Core Testing addresses these issues by proposing a flexible hardware test wrapper architecture for embedded cores, together with a core test language (CTL) used to describe the implemented wrapper functionalities. Several intellectual property providers have already announced IEEE Standard 1500 compliance in both existing and future design blocks. In this paper, we address the problem of guaranteeing the compliance of a wrapper architecture and its CTL description to the IEEE Standard 1500. This step is mandatory to fully trust the wrapper functionalities in applying the test sequences to the core. We present a systematic methodology to build a verification framework for IEEE Standard 1500 compliant cores, allowing core providers and/or integrators to verify the compliance of their products (sold or purchased) to the standar

    Performance Testing of Distributed Component Architectures

    Get PDF
    Performance characteristics, such as response time, throughput andscalability, are key quality attributes of distributed applications. Current practice,however, rarely applies systematic techniques to evaluate performance characteristics.We argue that evaluation of performance is particularly crucial in early developmentstages, when important architectural choices are made. At first glance, thiscontradicts the use of testing techniques, which are usually applied towards the endof a project. In this chapter, we assume that many distributed systems are builtwith middleware technologies, such as the Java 2 Enterprise Edition (J2EE) or theCommon Object Request Broker Architecture (CORBA). These provide servicesand facilities whose implementations are available when architectures are defined.We also note that it is the middleware functionality, such as transaction and persistenceservices, remote communication primitives and threading policy primitives,that dominates distributed system performance. Drawing on these observations, thischapter presents a novel approach to performance testing of distributed applications.We propose to derive application-specific test cases from architecture designs so thatthe performance of a distributed application can be tested based on the middlewaresoftware at early stages of a development process. We report empirical results thatsupport the viability of the approach

    Solving the TTC 2011 Model Migration Case with UML-RSDS

    Full text link
    In this paper we apply the UML-RSDS notation and tools to the GMF model migration case study and explain how to use the UML-RSDS tools.Comment: In Proceedings TTC 2011, arXiv:1111.440

    Model-driven design, simulation and implementation of service compositions in COSMO

    Get PDF
    The success of software development projects to a large extent depends on the quality of the models that are produced in the development process, which in turn depends on the conceptual and practical support that is available for modelling, design and analysis. This paper focuses on model-driven support for service-oriented software development. In particular, it addresses how services and compositions of services can be designed, simulated and implemented. The support presented is part of a larger framework, called COSMO (COnceptual Service MOdelling). Whereas in previous work we reported on the conceptual support provided by COSMO, in this paper we proceed with a discussion of the practical support that has been developed. We show how reference models (model types) and guidelines (design steps) can be iteratively applied to design service compositions at a platform independent level and discuss what tool support is available for the design and analysis during this phase. Next, we present some techniques to transform a platform independent service composition model to an implementation in terms of BPEL and WSDL. We use the mediation scenario of the SWS challenge (concerning the establishment of a purchase order between two companies) to illustrate our application of the COSMO framework

    Metamodel Instance Generation: A systematic literature review

    Get PDF
    Modelling and thus metamodelling have become increasingly important in Software Engineering through the use of Model Driven Engineering. In this paper we present a systematic literature review of instance generation techniques for metamodels, i.e. the process of automatically generating models from a given metamodel. We start by presenting a set of research questions that our review is intended to answer. We then identify the main topics that are related to metamodel instance generation techniques, and use these to initiate our literature search. This search resulted in the identification of 34 key papers in the area, and each of these is reviewed here and discussed in detail. The outcome is that we are able to identify a knowledge gap in this field, and we offer suggestions as to some potential directions for future research.Comment: 25 page
    • ā€¦
    corecore