1,682 research outputs found

    Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape Representation Learning and Generation

    Full text link
    Generative models for 3D geometric data arise in many important applications in 3D computer vision and graphics. In this paper, we focus on 3D deformable shapes that share a common topological structure, such as human faces and bodies. Morphable Models and their variants, despite their linear formulation, have been widely used for shape representation, while most of the recently proposed nonlinear approaches resort to intermediate representations, such as 3D voxel grids or 2D views. In this work, we introduce a novel graph convolutional operator, acting directly on the 3D mesh, that explicitly models the inductive bias of the fixed underlying graph. This is achieved by enforcing consistent local orderings of the vertices of the graph, through the spiral operator, thus breaking the permutation invariance property that is adopted by all the prior work on Graph Neural Networks. Our operator comes by construction with desirable properties (anisotropic, topology-aware, lightweight, easy-to-optimise), and by using it as a building block for traditional deep generative architectures, we demonstrate state-of-the-art results on a variety of 3D shape datasets compared to the linear Morphable Model and other graph convolutional operators.Comment: to appear at ICCV 201

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    Non-Convex and Geometric Methods for Tomography and Label Learning

    Get PDF
    Data labeling is a fundamental problem of mathematical data analysis in which each data point is assigned exactly one single label (prototype) from a finite predefined set. In this thesis we study two challenging extensions, where either the input data cannot be observed directly or prototypes are not available beforehand. The main application of the first setting is discrete tomography. We propose several non-convex variational as well as smooth geometric approaches to joint image label assignment and reconstruction from indirect measurements with known prototypes. In particular, we consider spatial regularization of assignments, based on the KL-divergence, which takes into account the smooth geometry of discrete probability distributions endowed with the Fisher-Rao (information) metric, i.e. the assignment manifold. Finally, the geometric point of view leads to a smooth flow evolving on a Riemannian submanifold including the tomographic projection constraints directly into the geometry of assignments. Furthermore we investigate corresponding implicit numerical schemes which amount to solving a sequence of convex problems. Likewise, for the second setting, when the prototypes are absent, we introduce and study a smooth dynamical system for unsupervised data labeling which evolves by geometric integration on the assignment manifold. Rigorously abstracting from ``data-label'' to ``data-data'' decisions leads to interpretable low-rank data representations, which themselves are parameterized by label assignments. The resulting self-assignment flow simultaneously performs learning of latent prototypes in the very same framework while they are used for inference. Moreover, a single parameter, the scale of regularization in terms of spatial context, drives the entire process. By smooth geodesic interpolation between different normalizations of self-assignment matrices on the positive definite matrix manifold, a one-parameter family of self-assignment flows is defined. Accordingly, the proposed approach can be characterized from different viewpoints such as discrete optimal transport, normalized spectral cuts and combinatorial optimization by completely positive factorizations, each with additional built-in spatial regularization
    corecore