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Zusammenfassung

Datenlabeling ist ein grundlegendes Problem der mathematischen Datenanalyse, bei dem
jedem Datenpunkt genau ein einziges Label (Prototyp) aus einer endlichen vordefinierten
Menge zugewiesen wird. In dieser Arbeit werden zwei herausfordernde Erweiterungen
untersucht, bei denen entweder die Eingabedaten nicht direkt beobachtet werden können
oder die Prototypen als Vorwissen nicht verfügbar sind.

Die Hauptanwendung des ersten Szenarios stellt die diskrete Tomographie dar. Es werden
mehrere nicht-konvexe variationelle sowie glatte geometrische Ansätze entwickelt, die aus
den indirekten Messungen eine Rekonstruktion ermitteln und gleichzeitig der Lösung die
bekannten Prototypen zuweisen. Insbesondere wird, basierend auf der KL-Divergenz, eine
räumliche Regularisierung von Labelings realisiert, welche die glatte Geometrie der diskreten
Wahrscheinlichkeitsverteilungen berücksichtigt, die durch die Fisher-Rao (Informations-)
Metrik gegeben ist, der Assignment Mannigfaltigkeit. Schließlich führt die geometrische
Sichtweise zu einem glatten Fluss, der sich auf einer Riemannschen Untermannigfaltigkeit
entwickelt und die Nebenbedingungen der tomographischen Projektion direkt mit in die
Geometrie der Assignments einbezieht. Darüber hinaus werden entsprechende implizite nu-
merische Schemata untersucht, die darauf hinauslaufen eine Folge von konvexen Problemen
zu lösen.

Ebenso wird für das zweite Szenario, wenn die Prototypen nicht gegeben sind, ein
glattes dynamisches System für unüberwachtes Datenlabeling eingeführt, welches durch
geometrische Integration auf der Assignment Mannigfaltigkeit evolviert. Die rigorose Ab-
straktion von “Daten-Label” zu “Daten-Daten” Entscheidungen führt zu interpretierbaren
Datenrepräsentationen mit niedrigen Rang, welche selbst wiederum durch die Assignments
parametrisiert sind. Der daraus resultierende Self-Assignment-Fluss lernt latente Proto-
typen gleichzeitig, während diese als Labels für die Inferenz benutzt werden, im selben
Framework. Darüber hinaus bestimmt ein einziger Parameter, die Skala der Regularisierung
bezüglich des räumlichen Kontextes, den gesamten Prozess. Durch glatte geodätische
Interpolation zwischen verschiedenen Normierungen von Self-Assignment Matrizen auf
der positiv definiten Matrix-Mannigfaltigkeit wird eine Einparameter-Familie von Self-
Assignment-Flüssen definiert. Dementsprechend kann der vorgeschlagene Ansatz unter
verschiedenen Gesichtspunkten wie diskreter optimaler Transport, normalisierte spektrale
Schnitte und kombinatorische Optimierung durch vollständig positive Faktorisierungen
charakterisiert werden, jeder mit zusätzlich eingebauter räumlicher Regularisierung.
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Abstract

Data labeling is a fundamental problem of mathematical data analysis in which each data
point is assigned exactly one single label (prototype) from a finite predefined set. In this
thesis we study two challenging extensions, where either the input data cannot be observed
directly or prototypes are not available beforehand.

The main application of the first setting is discrete tomography. We propose several non-
convex variational as well as smooth geometric approaches to joint image label assignment
and reconstruction from indirect measurements with known prototypes. In particular, we
consider spatial regularization of assignments, based on the KL-divergence, which takes
into account the smooth geometry of discrete probability distributions endowed with the
Fisher-Rao (information) metric, i.e. the assignment manifold. Finally, the geometric
point of view leads to a smooth flow evolving on a Riemannian submanifold including the
tomographic projection constraints directly into the geometry of assignments. Furthermore
we investigate corresponding implicit numerical schemes which amount to solving a sequence
of convex problems.

Likewise, for the second setting, when the prototypes are absent, we introduce and study
a smooth dynamical system for unsupervised data labeling which evolves by geometric
integration on the assignment manifold. Rigorously abstracting from “data-label” to
“data-data” decisions leads to interpretable low-rank data representations, which themselves
are parameterized by label assignments. The resulting self-assignment flow simultaneously
performs learning of latent prototypes in the very same framework while they are used
for inference. Moreover, a single parameter, the scale of regularization in terms of spatial
context, drives the entire process. By smooth geodesic interpolation between different
normalizations of self-assignment matrices on the positive definite matrix manifold, a one-
parameter family of self-assignment flows is defined. Accordingly, the proposed approach can
be characterized from different viewpoints such as discrete optimal transport, normalized
spectral cuts and combinatorial optimization by completely positive factorizations, each
with additional built-in spatial regularization.
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Multilabeling Subject to Projection Constraints,” in Proceedings of the 38th German
Conference on Pattern Recognition, vol. 9796 LNCS, Springer, 2016, pp. 261–272

xix



List of Publications
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CHAPTER 1

Introduction and Overview

1.1. Motivation

From the beginning of mankind it was necessary to think in categories in order to survive.
The ability to assign unknown entities (things, plants, animals, situations) to known ones to
quickly classify and analyze them is crucial for making decisions. Nowadays in our modern
world we try to teach this ability to machines to advance technologies such as self-driving
vehicles, doctorless diagnosis and autonomous robotic surgeries in healthcare as well as
robo-advisers for algorithmic stock trading and investment. Input data are required for the
decision basis of such systems, these can be of visual (images) or abstract nature. Before
the data as a whole can be understood on a semantic level by the system, the individual
data points (pixels) must be understood and categorized in terms of labels in a first step.

Data or image labeling is a fundamental problem of low-level data analysis. Let data
be given on a graph, the (multi-)labeling problem consists of uniquely assigning to each
vertex an optimal label from a finite set of prototypes which is pre-specified in advance
and constitutes a strong prior knowledge. The set of edges encodes contextual information
(regularization) and therefore decisions depend on each other such that data points related
by a neighborhood are likely to get the same label assignment. These dependencies make
computing a globally optimal solution a challenging combinatorial problem, which is
NP-hard in general.

In practice, relaxations serve as computationally feasible approximations to overcome
the combinatorial difficulty. Particularly for labeling problems with image data numerous
variational formulations were developed to approximate models defined on continuous or
discrete domains. Probably the most influential continuous model is the Mumford-Shah
model [MS89], which allows to explicitly describe discontinuities in a spatially continuous
framework in which the structure of solutions is mathematically well understood. After
spatial discretization, the piecewise constant limit directly corresponds to the image labeling
problem. The resulting piecewise constant Mumford-Shah model is highly non-convex
as a feature of perimeter regularization, therefore convex relaxations [ZGFN08; LBS09;
PCCB09] aim to provide a tight but still tractable convex envelope of the original non-convex
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functional. We refer to [NTC13] for a comprehensive survey and evaluation.

On the other hand in physics and in the field of computer vision discrete models
are prevalent. In statistical mechanics, the Potts model [Pot52] describes interacting
spins and is defined on discrete lattices. This is the discrete equivalent of the piecewise
constant Mumford-Shah model. The Potts model strongly influenced the development of
(probabilistic) graphical models which may be translated into discrete Markov random
fields under certain conditions. Despite the discrete nature of graphical models, inference
still remains a difficult combinatorial problem. Hence, the local-polytope relaxation, a
particular linear programming relaxation [Wer07] is commonly used as convex relaxation
of graphical models inference. In addition, for submodular energies, so called move-making
algorithms such as the α-expansion algorithm [BVZ01] yield suboptimal solutions in a
greedy way. We refer to [KAH+15] for a comprehensive survey and evaluation.

The success of convex relaxations of the labeling problem is based on the fact that a
globally optimal solution can be found in polynomial time. Unfortunately, the global
solution only minimizes the relaxed functional and not the original non-convex functional.
Hence, an additional rounding step is required to project back the solution of the relaxed
problem onto the set of admissible discrete solutions, however the performance is hard
to control [LLS12]. Additionally, both continuous and discrete convex relaxations are
inherently non-smooth, which is the price to pay for convexity.

Motivated to overcome the above-mentioned shortcomings of convex relaxations, the
assignment flow framework [ÅPSS17], a smooth dynamical system for data labeling was
recently introduced. See Section 2.3 for a brief review. The flow evolves on an elementary
statistical manifold, the state space, which decouples label decisions from the feature
space used to model the input data. More precisely, each data point is associated with
a probability simplex to encode the label decisions by the simplex vertices. The interior
of each simplex is turned into a smooth Riemannian manifold which is endowed with
the Fisher-Rao (information) metric [BR82]. In particular the driving vector field of the
assignment flow is based on the smooth geometry which gradually enforces unique label
decisions. Adopting the e-connection of information geometry [Kas89; AC10] enables
integration of the flow with sparse and efficient numerical updates. Finally smoothness
together with the compositional modular design of the assignment flow allows flexible
extensions to more complicated tasks.

So far we have seen that a variety of approaches have already been developed to
approximately solve the combinatorial hard labeling problem. In this thesis, however, we
consider two challenging extensions of the labeling problem that considerably increase the
difficulty. We assume that either prototypes are not available beforehand or the input data
cannot be observed directly. Therefore, during the labeling process the prototypes have to
be inferred from the data, which extends the labeling problem from a supervised scenario
to an unsupervised scenario. Likewise, if the input data can only be observed indirectly
and therefore have to be reconstructed during the labeling process extends the labeling
problem with direct input data to the setting with indirect measurements as input data.

1.2. Multilabel Methods for Tomography Reconstruction

The first two parts of this thesis are dedicated to the multilabel problem with indirect
measurements, where the image to be labeled cannot be observed directly, however indirect
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measurements related by a linear operator are available instead. This amounts to solving an
inverse problem and labeling the solution simultaneously. As a consequence, the multilabel
problem with indirect measurements is essentially more difficult to solve.

In this thesis, we are particularly interested in the application of non-binary discrete
tomography reconstruction [HK99; NW01], which perfectly fits into this setting. Many
situations require to keep the number of measurements as low as possible, which leads
to a small number of projections angles and hence to a severely under-sampled (ill-
posed) reconstruction problem. The use of discrete tomography ranges from medical
imaging [BSLB11], to natural sciences and industrial applications, like non-destructive
material testing [HFU08]. The measurements correspond to line integrals that sum up
all pixel-values (absorptions) over each ray transmitted through the object from different
projection angles. Typically the forward projections are known and given as projection
matrix encoding the imaging geometry. To cope with such problems, the under-sampled
projection data is compensated by the assumption that the finite levels i.e. a set of
prototypes, of the reconstructed function are known beforehand. Hence the reconstruction
of piecewise constant images from indirect measurements can be regarded as a generalized
supervised labeling problem.

The main difficulty lies in the fact that there is no direct input data available for a
localized dataterm, which is based on the distances between each data point and prototype.
Rather, in the case of discrete tomography, the linear projection matrix introduces non-
local decisions by coupling the values of pixels along rays. This means that if we change
a label in just one pixel, we may need to change the labels for all pixels to satisfy
the projection constraints. Therefore, a natural approach is to drop the combinatorial
constraints completely [SP08; GBB+12]. In the end, however, a rounding step is required to
project back the continuous solution with possibly intermediate values to a discrete solution.
More sophisticated two-step approaches [MFKI10; BS11; TKS+15] first reconstruct an
image without the integral constraints and then apply a standard labeling approach
for direct measurements. These two-step approaches suffer from two major drawbacks,
though. The reconstruction process is decoupled from the labeling process, which means
the reconstruction method cannot exploit the crucial prior knowledge that the solution
only takes values in a given finite set. In addition, after the second step the resulting
labeling is not necessarily consistent with the linear projection constraints.

Therefore, the first part of this thesis is dedicated to the question of how to effectively
exploit the additional prior knowledge directly during the reconstruction process. We
propose a non-smooth and non-convex variational formulation which jointly reconstructs
and labels a solution of a system of linear equations. The difficulty is to intertwine the
reconstruction process as closely as possible with the labeling process. Our approach is to
express the projection constraints directly in terms of decision variables of the labeling
problem. However, this results in a weak dataterm which introduces additional non-integral
solutions. As a remedy we introduce an additional dataterm for pixel-wise independent
decisions which depends on the current iterate. Finally, this naive fixed-point iteration
motivates a non-convex discretization term to exclude non-integral solutions by using the
prior knowledge (prototypes).

Although the first approach encodes label decisions by discrete probability distributions,
their underlying geometry is ignored. Hence, the second part of this thesis investigates how
to formulate the labeling problem with indirect measurements with geometric concepts
from the assignment flow framework [ÅPSS17]. As a first step we focus on the spatial

3



1. Introduction and Overview

regularization of assignments. A novel regularization term is based on the KL-divergence,
which locally approximates the squared geodesic distance on the probability simplex
equipped with the Fisher-Rao metric [Kas89]. Additionally, the resulting optimization
algorithm exploits the underlying geometry by using the KL-divergence as a proximity
measure for generalized proximal mappings. Consequently, no reprojection step onto the
pixel-wise simplex constraints is required in numerical algorithms.

Finally, in a second formulation we extend the geometric setting itself to include the
projection constraints directly. We restrict the assignment manifold to a Riemannian
submanifold satisfying the affine projection constraints. Thereby, the submanifold is
equipped with a Hessian Riemannian metric which naturally extends the Fisher-Rao metric
of the assignment manifold. In the end we construct the tomographic assignment flow, a
smooth gradient flow on a Riemannian submanifold for joint tomographic reconstruction
and label assignment.

1.3. Unsupervised Data Labeling and Prototype Learning

The last part of this thesis is dedicated to unsupervised data labeling. In contrast to
the previous extension, the input data are directly available. However prototypes are not
available beforehand and have to be inferred from the data. In practice, the availability of
prototypes as class representatives is a strong requirement. In many applications either
prototypes are not available or it is not clear which prototypes represent the classes properly.
Again, two-step approaches are a basic remedy. Clustering the data in a preprocessing
step yields prototypes which are used by a supervised labeling approach in a second step.
However, when learning prototypes this way, the framework in which they are used is not
properly taken into account. In particular, the (spatial) context in terms of regularization
is not considered.

Therefore in this work, we pursue the strategy of simultaneously learning (latent)
prototypes in the very same framework while they are used for inference, i.e. assignment
of labels. Smoothness and compositional design of the assignment flow are key to linking
label learning and inference as closely as possible. As a consequence, this motivates to
extend the supervised assignment flow to unsupervised scenarios. We introduce the idea of
self-assignment by removing the necessity of explicit prototypes and replacing them by a
copy of the given data. Hence the given data are assigned onto itself by abstracting from
“data-label” to “data-data” decisions, which specifies if two data points belong to the same
cluster or not. Consequently, prototypes are no longer involved explicitly but implicitly
as latent variables resulting from low-rank data representations, which themselves are
parameterized by label assignments. Finally, the proposed self-assignment flow is a single
smooth process evolving on the assignment manifold by geometric integration to perform
prototype learning and label assignment simultaneously. Thereby, only one component of
the supervised assignment flow needs to be generalized to take the self-assignments into
account as local decisions, while all subsequent building blocks remain unaltered. Moreover,
a single parameter, the neighborhood size of the geometric regularization in terms of the
spatial context, drives the entire process. This parameter determines how fine or coarse the
resulting partition is, and how many corresponding latent prototypes are used effectively.
At the same time, the geometric spatial regularization of assignments introduces no bias to
the emergence of latent prototypes. By smooth geodesic interpolation between different
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normalizations of self-assignment matrices on the positive definite matrix manifold, a
one-parameter family of self-assignment flows is defined. Accordingly, the approach can
be characterized from different viewpoints, e.g. as performing spatially regularized, rank-
constrained discrete optimal transport, or as computing spatially regularized normalized
spectral cuts. Regarding combinatorial optimization, our approach successfully determines
completely positive factorizations of self-assignments in large-scale scenarios, subject to
spatial regularization. As a challenging application, to demonstrate the flexibility and
plug-in-and-play principle of the approach, we consider locally invariant patch dictionary
learning and assignment as well as transfer to novel data.

1.4. Contribution and Organization

In this work, we investigate non-convex and geometric approaches for two challenging
extensions of the data labeling problem introduced above. Regarding the multilabel
problem with indirect measurements and with particular focus on discrete tomography
reconstruction, our main contributions are:

• A variational formulation for joint label assignment and reconstruction from only
a few projection angles. Contrary to existing work, we exploit the additional prior
knowledge, the known intensities (prototypes), already during the reconstruction.
We show how the resulting overall non-convex energy can be optimized efficiently by
a fixed-point iteration which requires to solve a convex problem at each step.

• A regularization term for spatially coherent label assignments which respects the
underlying geometry of discrete probability distributions. Furthermore, we evaluate
the generalized proximal mapping of the regularizer by a fixed point iteration rather
than solving a large non-linear system of equations. This strategy is numerically
efficient even for larger problem instances.

• A smooth geometric approach evolving on a Riemannian submanifold to simultane-
ously perform reconstruction and label assignment. By restricting the feasible set
to a submanifold, equipped with a natural extension of the Fisher-Rao metric, we
adopt the assignment manifold to discrete tomography. We show that the resulting
smooth gradient flow can be geometrically integrated by an iterated implicit scheme.

Regarding unsupervised data labeling and prototype learning, our main contributions are:

• A smooth dynamical system for unsupervised data labeling as a direct generalization
of the supervised assignment flow which evolves by geometric integration on the
assignment manifold. We show that prototypes emerge indirectly as latent variables
such that they are learned in the very same framework in which they are used for
inference.

• A one-parameter family of low-rank matrix factorizations of assignments for data
clustering, which is defined by smooth geodesic interpolation between different nor-
malizations of self-assignment matrices on the positive definite matrix manifold.
We discuss the rich algebraic properties and relate the extreme points to normal-
ized spectral cuts as well as completely positive optimization and discrete optimal
transport.
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• A locally invariant patch distance which we use to demonstrate the generality and
flexibility of the approach in more advanced scenarios of unsupervised patch dictionary
learning and transfer to novel data.

The remainder of this thesis is structured as follows: In Chapter 2 we briefly review
the mathematical background on convex analysis and differential geometry, including the
supervised assignment flow as a basic framework. Furthermore, we collect material on
discrete tomography and clustering which is required in subsequent chapters.

In Chapter 3 we introduce the multilabel problem with indirect measurements and
Potts regularization for simultaneous reconstruction and labeling for discrete tomography.
As a first step, we reformulate the non-local projection constraints in terms of probability
vectors (label assignments) and we motivate and derive a non-convex discretization term
to exclude non-integral solutions. We propose a non-smooth and non-convex variational
approximation to the combinatorial multilabel problem with indirect measurements. In
order to minimize the proposed non-convex energy we work out an optimization algorithm
based on the DC framework. The resulting algorithm recovers the naive fixed-point
iteration, which is a sequence of convex problems. Finally, we numerically evaluate and
compare the proposed approach with state-of-the-art methods for non-binary tomography
reconstruction on standard test-datasets with only a few projection angles.

Chapter 4 is devoted to geometric aspects of the multilabel problem with indirect
measurements. At first we introduce a non-convex variational formulation which involves
spatial regularization of assignments respecting the underlying geometry of discrete proba-
bility distributions. We derive an optimization algorithm based on the DC framework to
minimize the variational non-convex energy. Generalized Bregman proximal maps allow
to solve the convex subproblems in a geometric way. We suggest a converging fixed-point
iteration to evaluate the proximal mapping of the geometric regularizer efficiently.

Finally, the geometric point of view leads to the tomographic assignment flow, defined
as a Riemannian gradient flow on a submanifold including the projection constraints.
Therefore, we motivate a suitable objective function to simultaneously perform tomographic
reconstruction and labeling. We derive an iterated implicit scheme to integrate the
tomographic assignment flow which relies on the Bregman proximal point method. We
numerically evaluate and compare the proposed approaches with state-of-the-art methods
for non-binary tomographic reconstruction on standard test-datasets with only a few
projection angles.

Finally Chapter 5 deals with unsupervised data labeling and label learning. First we
introduce the concept of self-assignment by removing explicit prototypes and replacing them
by a copy of the given data to abstract from “pixel-label” to “pixel-pixel” decisions. This
allows us to introduce a family of self-assignment matrices as low-rank matrix factorizations
which have rich algebraic properties. In addition, we give detailed interpretations of the
self-assignment matrices and show how latent prototypes emerge and can be recovered.
Based on the self-assignment matrices we propose a family of self-assignment flows by
generalizing the likelihood map of the assignment flow and discuss the numerical integration
as well as key properties. We point out connections of the approach to related work from
three different viewpoints: spectral relaxation, discrete optimal transport and matrix
factorization with aspects of combinatorial optimization. Finally, we demonstrate and
compare the approach in various numerical experiments, including unsupervised and locally
invariant patch learning, assignment and transfer to novel data.

6



1.5. Basic Notation

Finally, in Chapter 6 we draw a conclusion and give an outlook for possible future
work.

1.5. Basic Notation

We set [n] = {1, 2, . . . , n} for n ∈ N and 1n = (1, 1, . . . , 1)> ∈ Rn. We denote the cardinality
of a finite set S by |S|. The following spaces of matrices will be used.

• Sn: symmetric n× n matrices

• Sn+: symmetric nonnegative n× n matrices

• Rn×c+ : nonnegative n× c matrices

• Pn: symmetric positive definite n× n matrices (see Section 2.2.5.1)

• St(c, n): orthonormal n× c matrices (see Section 2.2.5.2)

• Rn×c∗ : full-rank n× c matrices (see Section 2.2.5.3)

‖ · ‖ denotes the Euclidean norm and the Frobenius norm for vectors and matrices,
respectively. All other norms will be indicated by a corresponding subscript. In is the
identity matrix of Rn×n. For a matrix A ∈ Rn×c, Ai, i ∈ [n] denotes the row vectors and
Aj , j ∈ [c] denotes the column vectors, A> ∈ Rc×n the transpose and A† the Moore-Penrose
generalized inverse of A. tr(A) =

∑
i∈[n]Ai,i denotes the trace of a square matrix A ∈ Rn×n.

∆c = {p ∈ Rc : pi ≥ 0 ∧ 〈p, 1c〉 = 1} (1.1)

denotes the standard probability simplex. The orthogonal projection onto a closed convex
set C is denoted by ΠC .

For strictly positive vectors p > 0, we efficiently denote componentwise subdivision by v
p .

Likewise, we set pv = (p1v1, . . . , pnvn)>. The exponential function applies componentwise
to vectors (and similarly for log) and will always be denoted by ev = (ev1 , . . . , evn)>, in
order not to confuse it with the exponential maps (2.80).

In this work we use the Einstein summation convention, which means if the same index
name appears exactly twice, once as an upper index and once as a lower index, then we
sum up all corresponding expressions along this index. For a ∈ Rn and b ∈ Rn we have

aibi :=
n∑
i=1

aibi, (1.2)

Note, that there is an unambiguity of the symbol ∇, which in section 2.2.3 and 2.2.4
exclusively denotes an affine connection. Otherwise, the symbol ∇, for a differentiable
function F : Rn → R denotes its ordinary Euclidean gradient, i.e. ∇F = (∂1F, . . . , ∂nF )>.
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CHAPTER 2

Preliminaries

In this chapter basic material is collected that is required in subsequent chapters of this
thesis. Regarding the mathematical background, we briefly review basic concepts of
convex analysis (Section 2.1) and Riemannian Geometry (Section 2.2). Subsequently, we
introduce the assignment manifold and the geometric assignment flow (Section 2.3), which
is a smooth dynamical system for supervised data labeling. Furthermore, we state some
important methods and tools from data clustering (Section 2.4). Finally, we describe the
background and setup used for discrete tomography (Section 2.5).

2.1. Convex Analysis

In this section we briefly review the key concepts of convex analysis. We refer the reader
to the textbook [RW09] for a detailed introduction.

We consider extended real-valued functionals F : Rn → R mapping into the ex-
tended real line R := R ∪ {∞} = (−∞,+∞]. This offers a convenient way to include
restrictions to a subset C ⊂ Rn into functionals with the help of the indicator function
δC : Rn → R defined by

δC(x) =

{
0 if x ∈ C,
∞ if x ∈ Rn \ C.

(2.1)

The effective domain of F is defined as the set

domF := {x ∈ Rn : F (x) <∞}, (2.2)

and a functional F : Rn → R is called proper if domF 6= ∅, thus is not identical to +∞
and by definition attains nowhere −∞. A functional is coercive if F (x)→∞ as ‖x‖ → ∞.
The epigraph of a function F is defined by

epiF := {(x, α) ∈ Rn × R : F (x) ≤ α}. (2.3)

Moreover, the epigraph of a proper function is nonempty. A functional F is lower
semicontinuous (lsc.) at x if for every convergent sequence xk → x

F (x) ≤ lim inf
k→∞

F (xk) (2.4)
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holds and lower semicontinuous (lsc.) on Rn if this holds for every x ∈ Rn.

Theorem 2.1.1. For F : Rn → R we have, F is lsc. if and only if epiF is closed.

A set C ⊆ Rn is convex if for every pair of points x, y ∈ C, the line segment joining
these points is contained in C, i.e.

(1− α)x+ αy ∈ C, ∀α ∈ [0, 1]. (2.5)

A functional F : C → R is called convex relative to C ⊂ Rn, if C is convex and for every
x, y ∈ domF

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y), ∀α ∈ [0, 1], (2.6)

holds, and strictly convex if the above inequality is strict for all x 6= y. We have the
following relation between convexity of a function and convexity of a set.

Theorem 2.1.2. A function F : Rn → R is convex if and only if epiF is a convex set.

We call a functional F : Rn → R strongly convex or µ-convex if F (x) − µ
2‖x‖

2
2 is

convex.

2.1.1. Subdifferential

Moreover if F is a smooth function then convexity is equivalently characterized by

F (y) ≤ F (x) + 〈∇F (x), y − x〉, ∀x, y ∈ domF, (2.7)

which means that, the first order approximation supports the function at every point y.
Motivated by this relation, we generalize the notion of the gradient to non-differentiable
functions. The subdifferential ∂F (x) at x ∈ domF of F : Rn → R is defined by

∂F (x) = {g ∈ Rn : F (y) ≤ F (x) + 〈g, y − x〉, ∀ y ∈ Rn} (2.8)

and ∂F (x) = ∅ if F is not finite at x. The elements of ∂F (x) are called subgradients
of F at x. The subdifferential of the indicator function δC w.r.t a convex set C ⊂ Rn

at x ∈ domF is ∂δC(x) = {g ∈ Rn : 〈g, y − x〉, ∀ y ∈ C}, i.e. the normal cone. F is
differentiable at x if and only if the subdifferential is a singleton {∇F (x)}.

The notion of the subdifferential allows to generalize the Fermat principle, which is
neccesary and sufficient in case of convex functions.

Theorem 2.1.3 (Fermat’s Rule). Let F : Rn → R be convex, lsc. and x̂ ∈ domF . Then x̂
is a global minimizer of F if and only if

0 ∈ ∂F (x̂). (2.9)

2.1.2. Duality and Fenchel Conjugate

Let F : Rn → R be proper, then we define the Fenchel conjugate of F as

F ∗ : Rn → R, F ∗(p) = sup
x∈Rn
〈p, x〉 − F (x), (2.10)

which is always convex and lsc. Moreover, if F is lower bounded by an affine functional then
F ∗ is also proper. Directly from the definition we obtain the Fenchel-Young inequality

〈x, p〉 ≤ F (x) + F ∗(p), ∀x, p ∈ Rn. (2.11)

The Fenchel conjugate of the indicator function δC w.r.t a convex set C ⊂ Rn is the
support function

σC(p) := δ∗C(p) = sup
x∈C
〈x, p〉. (2.12)
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The next result characterizes the relationship between the Fenchel conjugate and the
subdifferential.

Lemma 2.1.4 (Subgradient Inversion Rule). Let F : Rn → R be proper, convex and lsc.
Then for x, p ∈ Rn the following statements are equivalent:

(i) 〈x, p〉 = F (x) + F ∗(p),

(ii) p ∈ ∂F (x),

(iii) x ∈ ∂F ∗(p).

In addition, Fenchel conjugation enables to associate a dual optimization problem to
each (primal) optimization problem. The dual problem can be easier to treat numerically
treated and may give insight into the primal problem and its solutions. Assuming a certain
composite structure of the functional, the Fenchel duality scheme gives sufficient conditions
for interchanging and relating the optimality conditions between the primal and the dual
problem.

Theorem 2.1.5 (Fenchel Duality Scheme). Let F : Rn → R and G : Rm → R be convex,
proper and lsc. and let A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Consider the two problems

inf
x∈Rn

φ(x), φ(x) = 〈c, x〉+ F (x) +G(b−Ax), (primal problem) (2.13a)

sup
y∈Rm

ψ(y), ψ(y) = 〈b, y〉 −G∗(y)− F ∗(A>y − c), (dual problem) (2.13b)

and suppose that strong duality holds, i.e.

b ∈ int(AdomF + domG), c ∈ int(A> domG∗ − domF ∗). (2.14)

Then the optimal solutions (x, y) are determined by

0 ∈ c+ ∂F (x)−A>∂G(b−Ax), 0 ∈ b− ∂G∗(y)−A∂F ∗(A>y − c) (2.15)

and connected through

y ∈ ∂G(b−Ax), x ∈ ∂F ∗(A>y − c), (2.16a)

A>y − c ∈ ∂F (x), b−Ax ∈ ∂G∗(y). (2.16b)

Furthermore, the duality gap vanishes, i.e. φ(x) = ψ(y).

2.1.3. Bregman Divergences

We introduce distance-like divergence functions, which are potentially asymmetric. In
order to precisely define a divergence we need the notion of a particular subclass of convex
functions. A proper convex function φ : Rn → R is of Legendre type if the following
holds

(i) int(domφ) 6= 0,

(ii) φ is differentiable and strictly convex on int(domφ),

(iii) for any sequence (xk) ⊂ int(domφ) convergenging to some boundary point, we have

‖∇φ(xk)‖ −→ +∞ for xk −→ x ∈ bd(domφ). (2.17)
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We associate to a function φ of Legendre type a corresponding Bregman divergence
Dφ : domφ× int(domφ)→ R+, which is defined by

Dφ(x, y) := φ(x)− φ(y)− 〈∇φ(y), x− y〉. (2.18)

Intuitively, a Bregman divergence measures the difference between φ(x) and the linearization
of φ arround y. The properties of a Lengendre function imply Dφ(x, y) ≥ 0 and Dφ(x, y) =
0⇔ x = y. Dφ(x, y) is strictly convex with respect to the first argument and Dφ(x, y) is
jointly continuous in both arguments. Furthermore, the positive definite Hessian w.r.t. the
first argument

∇2
xDφ(x, y) = ∇2φ(x) � 0, ∀x ∈ int(domφ), (2.19)

shows that a Bregman divergence induces a Riemannian metric whichs turns an open
subset of a Euclidean space into a Riemannian manifold.

In particular, for the standard probability simplex ∆c = {p ∈ Rc : pi ≥ 0 ∧ 〈p,1c〉 = 1}
together with the Legendre function φ(p) = 〈p, log(p)〉, i.e. the negative entropy function,
we obtain the Kullback-Leibler (KL) divergence

KL(p, q) := Dφ(p, q) =
〈
p, log

(p
q

)〉
, p, q ∈ ∆c, (2.20)

which is also known as relative entropy or information divergence.

2.1.4. Optimization and Algorithms

From the viewpoint of numerical optimization, convex objective functions may not nec-
essarily be differentiable and hence first-order gradient descent schemes are not directly
applicable. Replacing the gradient by an arbitrary subgradient of the convex subdifferential
is no sufficient remedy, since it is not guaranteed to yield a descent direction. Therefore,
we resort to the optimality condition 0 ∈ ∂F (x) and search for a zero of the set-valued
mapping x 7→ ∂F (x). For a convex, proper and lsc. function F : Rn → R the proximal
mapping ProxF : Rn → Rn is defined as the unique minimizer of

ProxF (x) := arg min
y∈Rn

1

2
‖y − x‖22 + F (y), (2.21)

of a strongly convex objective function. In addition, a generalized proximal mapping is
given when the squared Euclidean distance is replaced by some Bregman divergence. Hence,
the proximal mapping can be interpreted as a generalized Euclidean projection. In case
of the indicator function δC w.r.t a non-empty, closed and convex set C ⊂ Rn we have
ProxδC (x) = ΠC(x). Furthermore, the proximal mapping characterizes the explicit set
inclusion of Fermat’s rule by an implicit fixed-point equation. For arbitrary γ > 0 we have

0 ∈ ∂F (x) ⇔ 0 ∈ γ∂F (x) ⇔ x ∈ (Id+ γ∂F )(x), (2.22a)

⇔ x ∈ (Id+ γ∂F )−1(x) ⇔ x = ProxγF (x), (2.22b)

which yields the following Theorem.

Theorem 2.1.6. Let F : Rn → R be convex, proper and lsc. and γ > 0 arbitrary. Then
x ∈ domF is a minimizer of F if and only if

x = ProxγF (x). (2.23)

This immediately motivates to numerically compute a minimizer of F by the fixed-point
scheme stated in the next proposition.
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Proposition 2.1.7. Let F : Rn → R be convex, proper and lsc. and γ > 0 arbitrary. Then
the sequence (xk) generated by the proximal-point iteration

x(k+1) = ProxγF (x(k)), (2.24)

converges to a fixed-point x = ProxγF (x), i.e. a minimizer of F .

The proof relies on a weaker notion of a contraction (firmly non-expansive), which holds
for the proximal mapping for a convex, proper and lsc. function.

In this work we are interested in minimizing a composite objective, which is a problem
of the form

min
x∈Rn

F (x) +G(Ax), (2.25)

with F and G convex, proper, lsc. and A a linear operator. From the optimality conditions
of the Fenchel duality scheme and the subgradient inversion rule, the popular Chambolle-
Pock primal-dual algorithm [CP11] can be derived. The iteration for the stepsizes
σ, τ > 0 reads

x(k+1) = ProxτF
(
x(k) − τA>y(k)

)
, (primal step) (2.26a)

x(k+1) = 2x(k+1) − x(k), (extrapolation step) (2.26b)

y(k+1) = ProxσG∗
(
y(k) + σAx(k+1)

)
, (dual step) (2.26c)

where the primal step is a proximal gradient descent and the dual step is a proximal gradient
ascent. The additional extrapolation step is considerably accelerating the algorithm in
practice. The iteration of the primal-dual algorithm itself can be recast as a single
proximal point iteration with respect to the block-variable (x, y) and provably converges if
στ < λmax(A>A)−1 holds. A suitable termination criterion is the primal-dual gap, which
is an upper bound on the distance between the current objective value and the optimal
objective value of the primal problem.

2.2. Riemannian Geometry

In this section, we briefly summarize the main definitions and results of the theory of
smooth manifolds and Riemannian geometry, that are relevant in the context of this thesis.
We assume that the reader is already familiar with these concepts and otherwise refer to
the textbooks [Lee13; Lee18].

2.2.1. Tangent Bundle and Vector Fields

We consider n-dimensional smooth manifolds, which are topological manifolds endowed
with an extra structure that allows to extend differential calculus to manifolds. Furthermore,
we denote by C∞(M) the set of all smooth real-valued functions f :M→ R on the smooth
manifold M. Let M be a smooth n-dimensional manifold. Then for every point p ∈M, a
tangent vector at p is a linear functional v : C∞(M)→ R that is a derivation at p, i.e.
it satisfies the product rule

v(fg) = f(p)vg + g(p)vf, ∀ f, g ∈ C∞(M). (2.27)

The tangent space at p, denoted by TpM, comprises the set of all tangent vectors at p,
which is a vector space. Furthermore, each smooth coordinate chart ϕ : U → V ⊂ Rn on
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2. Preliminaries

some open subset U ⊆M with coordinate functions ϕ(p) = (x1(p), . . . , xn(p)) induces a
basis on TpM, the local coordinate vectors ∂

∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

given by

∂

∂xi

∣∣∣∣
p

f =
∂

∂xi

∣∣∣∣
ϕ(p)

(f ◦ ϕ−1). (2.28)

Therefore, every tangent vector v ∈ TpM can be written uniquely in the form

v = vi
∂

∂xi

∣∣∣∣
p

(2.29)

with vi = v(xi). For a finite dimensional vector space V each tangent space TpV is identified
with V itself.

Given a smooth map F :M→N and p ∈ M, we define the differential of F at p as
the linear map dFp : TpM→ TF (p)N satisfying

dFp(v)f = v(f ◦ F ), v ∈ TpM. (2.30)

The cotangent space T ∗pM = (TpM)∗ at p ∈ M is the dual space of the tangent
space, which is the set of all real-valued linear functionals on TpM called covectors at
p. Every smooth real-valued functional f ∈ C∞(M) together with p ∈ M induces a
covector dfp ∈ T ∗pM, by definition of the differential of f at p. Finally, the covectors
dx1
∣∣
p
, . . . , dxn|p form a dual basis to the coordinate vectors, given as the differential of

the coordinate functions ϕ(p) = (x1(p), . . . , xn(p)). As a consequence, we can uniquely
express any covector ω ∈ T ∗pM as

ω = ωidx
i|p ∈ T ∗pM. (2.31)

The disjoint union of all tangent spaces and cotangent spaces yields the tangent bundle
and cotangent bundle respectively

TM =
⋃̇
p∈M
{p} × TpM, T ∗M =

⋃̇
p∈M
{p} × T ∗pM. (2.32)

A smooth vector field on M is a smooth map

X :M→ TM, p 7→ Xp ∈ TpM, (2.33)

which is a smooth section of the tangent bundle, i.e. the property π1 ◦X = IdM holds.
We denote by X(M) the set of all smooth vector fields on M. Analogously, we denote by
X∗(M) the set of all smooth covector fields on M (i.e. one-forms). Once a chart (U,ϕ) is
fixed, the vector field X can be locally written in coordinate vectors

Xp = Xi(p)
∂

∂xi

∣∣∣∣
p

, p ∈ U ⊆M. (2.34)

A mapping F :M→N is called a smooth immersion if F is a smooth map where the
differential dFp is injective and the rank of dFp as a linear mapping is constant and equal to
the dimension of N . Moreover, we call a smooth injective immersion F :M→N a smooth
embedding if F is also a topological embedding, i.e. a homeomorphism onto its image
F (M) ⊆ N . A subset S ⊆ M of a smooth manifold M is an embedded submanifold
if S is a manifold in the subspace topology, endowed with a smooth structure such that
the inclusion map i : S ↪→M is a smooth embedding. Every open subset S ⊆ M is an
embedded submanifold of the same dimension as M and the tangent spaces coincide after
identification.

In the two subsequent sections, we equip a smooth manifold with two additional (inde-
pendent) structures, a metric tensor and an affine connection.

14



2.2. Riemannian Geometry

2.2.2. Riemannian Metrics

The Riemannian metric (also called metric tensor) turns every tangent space into an inner
product space which allows to measure lengths and angles between tangent vectors and
define a distance on M.

A Riemannian metric onM is a smooth symmetric covariant 2-tensor field (a smooth
section of the 2-covariant tensor bundle)

gp(v, u) = 〈v, u〉g, v, u ∈ TpM, (2.35)

that is positive definite at each point p ∈ M, i.e. gp(v, v) ≥ 0 for all v ∈ TpM and
gp(v, v) = 0 iff v = 0. A smooth manifold M that is additionally equipped with a
Riemannian metric g is called a Riemannian manifold and denoted by the tuple (M, g).
Fixing a local chart (U,ϕ), the Riemannian metric g can be written in local coordinates
ϕ(p) = (x1(p), . . . , xn(p)) by using the basis of the cotangent space

g = gijdx
i ⊗ dxj , (2.36)

with gij ∈ C∞(M). For p ∈ M and v, u ∈ TpM in local coordinates u = uk ∂
∂xk

∣∣
p
, v =

vl ∂
∂xl

∣∣
p

we have

gp(u, v) = gij(p)u
kvldxi|p

(
∂
∂xk

∣∣
p

)
⊗ dxj |p

(
∂
∂xl

∣∣
p

)
= gij(p)u

kvlδik
∣∣
p
δjl
∣∣
p

= gij(p)u
ivj .

(2.37)
Furthermore, we have the following geometric concepts on any Riemannian manifold. For
a tangent vector v ∈ TpM at point p ∈M the norm induced by the Riemannian metric
is given by

‖v‖g =
√
〈v, v〉g, (2.38)

and the angle between two tangent vectors v, u ∈ TpM is defined as

cos(θ) =
〈u, v〉g
‖u‖g‖v‖g

, (2.39)

with θ ∈ [0, π). Moreover, two tangent vectors v, u ∈ TpM are orthogonal if 〈u, v〉g = 0.

Let g be a Riemmanian metric on N and the mapping F : M → N be a smooth
immersion. Then, the pullback metric F ∗g gives a metric on M defined by

(F ∗g)(u, v)p = g
(
dFp(u), dFp(v)

)
F (p)

, v, u ∈ TpM. (2.40)

A diffeomorphism F :M→N between (M, g) and (N , h) is called Riemannian isometry
if F ∗h = g holds.

A connected Riemannian manifold (M, g) can be turned into a metric space by defining
a metric on M which is called Riemannian distance and is given by the length of the
shortest path in M, that connects p, q ∈M

dg(p, q) = inf
γ∈Γ(p,q)

Lg(γ), with Lg(γ) =

∫ b

a
‖γ̇‖g dt, (2.41)

where Γ(p, q) is the set of all smooth curves γ : [a, b]→M connecting p and q.

Let S ⊆M be an embedded submanifold of (M, g) with the includsion map i : S →M.
Then, the pullback metric i∗g is the induced metric on S and (S, i∗g) is called a
Riemannian submanifold.

The differential of a smooth real-valued function defines a covector field, however the
inner product induced by the Riemannian metric allows to identify covectors with tangent
vectors. This motivates to define the Riemannian gradient of a function f ∈ C∞(M)
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as the vector field

grad f ∈ X(M), (2.42)

that is uniquely determined by

〈grad f,X〉g = df(X) = Xf, ∀X ∈ X(M). (2.43)

Moreover, with the linear tangent-cotangent isomorphism mapping a vector field to a
covector field which is given by

ĝ : X(M)→ X∗(M), X 7→ g(X, ·), (2.44)

we have an equivalent characterization of the Riemannian gradient, i.e. grad f = ĝ−1(df).

2.2.3. Affine Connections

An affine connection is a differential operator which defines the covariant derivative and
the notion of geodesics. Note, that in this section the symbol ∇ is exclusively used for
affine connections and in all other sections it denotes the Euclidean gradient.

An affine connection on a smooth manifold M is a linear map

∇ : X(M)× X(M)→ X(M), (X,Y ) 7→ ∇(X,Y ) =: ∇XY, (2.45)

with the following properties

(i) C∞(M)-linearity in the first argument,

∇(X1+X2)Y = ∇X1Y +∇X2Y, (2.46a)

∇(fX)(Y ) = f∇XY, (2.46b)

(ii) R-linearity and product rule in the second argument

∇X(Y1 + Y2) = ∇XY1 +∇XY2, (2.47a)

∇X(fY ) = X(f)Y + f∇XY, (2.47b)

for all f ∈ C∞(M) and X,X1, X2, Y, Y1, Y2 ∈ X(M). In addition we have ∇Xf = df(X) =
Xf for a real-valued function f ∈ C∞(M) (a 0-tensor).

The resulting vector field ∇XY is called the covariant derivative of Y in direction X.
Furthermore, the connection can be written in local coordinates by defining the Christoffel
symbols of the second kind of the connection ∇ as

Γkij
∂

∂xk
:= ∇ ∂

∂xi

∂
∂xj

, (2.48)

and for X = Xi ∂
∂xi
, Y = Y j ∂

∂xj
we have

∇XY =
(
X(Y k) +XiY jΓkij

) ∂

∂xk
. (2.49)

2.2.4. Geodesics and Exponential Map

Note, that in this section the symbol ∇ is exclusively used for affine connections and in all
other sections it denotes the Euclidean gradient.

A smooth curve on a smooth manifold M is a smooth mapping γ : I →M and the
velocity γ′ defined by

γ′ : I → TM, t 7→ γ′(t) ∈ Tγ(t)M, (2.50)
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2.2. Riemannian Geometry

is a vector field along γ. The set of all smooth vector fields along γ is denoted by X(γ).
Furthermore, each connection ∇ on M induces a covariant derivative Dt : X(γ) → X(γ)
along a smooth curve γ on M. With this notion we are ready to define the acceleration
of γ to be the vector field Dtγ

′. A smooth curve γ is called a geodesic with respect to the
connection ∇ if its acceleration is zero, i.e. Dtγ

′ = 0. Fixing a smooth chart (U,ϕ) arround
γ(t0) ∈ U we can write the component functions of γ as (ϕ ◦ γ)(t) = (γ1(t), . . . , γn(t)) for
t ∈ (t0 − ε, t0 + ε). Then a geodesic γ is characterized by the geodesic equation

Dtγ
′ =

(
γ̈k + γ̇iγ̇jΓkij ◦ γ

) ∂

∂xk

∣∣∣∣
γ

= 0, (2.51a)

⇔ γ̈k(t) + γ̇i(t)γ̇j(t)Γkij(γ(t)) = 0, (2.51b)

which is a system of second-order orinary differential equations (ODEs) for the real-valued
functions γ1, · · · , γn. Given suitable initial conditions, γ(0) = p ∈M and γ′(0) = v ∈ TpM,
the theory of ODEs ensures existence and uniqueness of a maximal geodesic on an open
interval 0 ∈ I ⊆ R. This geodesic is also called the geodesic with initial point p and initial
velocity v and denoted by γv(t).

Let M be a smooth manifold endowed with an affine connection ∇. Then the mapping

Expp : Vp ⊂ TpM→M, v 7→ γv(1), (2.52)

is called the exponential map at p ∈M, which is defined on

Vp = {v ∈ TpM : γv exists on [0, 1]}. (2.53)

The exponential map is a diffeomorphism between 0 ∈ U ⊂ TpM and p ∈ V ⊂ M.
The inverse exponential map is called the logarithmic map and denoted by Logp(q) =

Exp−1
p (q) for p, q ∈ M. A smooth manifold M is geodesically complete if Vp = TpM

for all p ∈ M, i.e. every maximal geodesic is defined for all t ∈ R. Due to the rescaling
property we have Expp(tv) = γv(t).

In the Riemannian setting, the exponential map is also called Riemannian exponential
map, that is with respect to Levi-Civita connection. Note that geodesics induced by the
Levi-Civita connection are locally length minimizing, i.e. the shortest path between γv(a)
and γv(b) for nearby points a, b ∈ M. This motivates to define a generalization of the
arithmetic mean in Euclidean spaces. We define the weighted Riemannian mean of a
set {p1, . . . , pr} ⊂ M of r points with respect to the weights w = (w1, . . . , wr) ∈ ∆r as the
point q ∈M satisfying

q = arg min
p∈M

Jw(p), with Jw(p) =
1

2

∑
i∈[r]

wid
2
g(pi, p), (2.54)

with respect to the Riemannian distance dg(q, p) on M. The Riemannian gradient of Jw
[Jos17, Lemma 6.9.4] at p ∈M reads

gradp Jw = −
∑
i∈[r]

wi Logp(pi) ∈ TpM, (2.55)

and therefore the neccesary optimality condition for a critical point q is given by∑
i∈[r]

wi Logq(pi) = 0. (2.56)

This equation is typically solved by a fixed point iteration

q(k+1) = Expq(k)
(∑
i∈[r]

wi Logq(k)(pi)
)
, (2.57)
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with a suitable initialization q(0) ∈M.

2.2.5. Matrix Manifolds

Here we list important embedded submanifolds of Rn×c, i.e. matrix manifolds, that are
used in the subsequent chapters of this work. Furthermore, we parametrize all objects with
respect to the embedding space Rn×c instead of using charts. For a detailed introduction
to matrix manifolds we refer to [AMS09].

2.2.5.1. The Positive Definite Matrix Manifold Pn

The following is taken from [Bha06]. The open set

Pn = {S ∈ Sn : λi(S) > 0, ∀i ∈ [n]} (2.58)

of symmetric and positive definite matrices is an embedded submanifold of Sn which is a
linear subspace of Rn×n. The smooth manifold Rn×c∗ is called positive definite matrix
manifold and the tangent spaces TSPn ∼= Sn are identified with Sn and hence the tangent
bundle TPn is trivial. Moreover, the manifold Pn forms a Riemannian manifold with the
metric

gS(S1, S2) = tr(S−1S1S
−1S2), S1, S2 ∈ Sn, S ∈ Pn (2.59a)

and corresponding norm

‖T‖g(S) = ‖S−1/2TS−1/2‖, T ∈ Sn, S ∈ Pn. (2.59b)

For any A,B ∈ Pn, there exists a unique geodesic joining A and B given by

γ(s) = A1/2
(
A−1/2BA−1/2

)s
A1/2, s ∈ [0, 1]. (2.60)

2.2.5.2. Compact Stiefel Manifold St(c, n)

Let c ≤ n, then the set of all n× c orthonormal matrices

St(c, n) = {X ∈ Rn×c : X>X = Ic}, (2.61)

is an embedded submanifold of Rn×c∗ . The smooth manifold St(c, n) is called compact
Stiefel manifold and the tangent spaces are given by

TXSt(c, n) = {Z ∈ Rn×c : X>Z + Z>X = 0}. (2.62)

The manifold Rn×c∗ is turned into a Riemannian manifold with the Euclidean metric

gX(Z1, Z2) = tr(Z>1 Z2), Z1, Z2 ∈ Rn×c, X ∈ St(c, n), (2.63)

inherited from the embedding space. In case of n = 1, the compact Stiefel manifold reduces
to the unit sphere in Rn and in case of n = c it becomes the orthogonal group O(n).

2.2.5.3. Non-Compact Stiefel Manifold Rn×c∗

Let c ≤ n, then the set of all n× c matrices whose columns are linearly independent

Rn×c∗ = {X ∈ Rn×c : det(X>X) 6= 0}, (2.64)

is an open subset of Rn×c and consequently is an embedded submanifold of Rn×c. The
smooth manifold Rn×c∗ is called non-compact Stiefel manifold and the tangent spaces
are given by

TXRn×c∗ = Rn×c. (2.65)
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The manifold Rn×c∗ is turned into a Riemannian manifold with the metric

gX(Z1, Z2) = tr
(
(X>X)−1Z>1 Z2

)
, Z1, Z2 ∈ Rn×c, X ∈ Rn×c∗ . (2.66)

In case of n = c, the non-compact Stiefel manifold is the general linear group GL(n), i.e.
the set of all invertible n× n matrices.

2.3. The Assignment Framework

This section reviews the assignment flow [ÅPSS17], which is a basic dynamical system
labeling data given on a graph in supervised scenarios. We refer to [Sch20] for a more
elaborate exposition and a review of recent developments. Well-posedness and stability
of the supervised assignment flow was established in [ZZS20] under suitable conditions.
In the subsequent sections, all objects from differential geometry are parametrized with
respect to the embedding space Rn×c instead of using local coordinates.

2.3.1. Assignment Manifold

Let (F , dF ) be a metric space and

Fn = {fi ∈ F : i ∈ I}, |I| = n, (2.67)

be given data. Assume that a predefined set of prototypes

F∗ = {f∗j ∈ F : j ∈ J }, |J | = c, (2.68)

is given. Data labeling denotes the assignment

j → i, f∗j → fi (2.69)

of a single prototype f∗j ∈ F∗ to each data point fi ∈ Fn. The set I is assumed to form
the vertex set of an undirected graph G = (I, E) which defines a relation E ⊂ I × I and
neighborhoods

Ni = {k ∈ I : ik ∈ E} ∪ {i}, (2.70)

where ik is a shorthand for the unordered pair (edge) (i, k) = (k, i).

The assignments (labeling) (2.69) are represented by matrices in the set

Wc
∗ =

{
W ∈ {0, 1}n×c : W1c = 1n, rank(W ) = c

}
(2.71)

with unit vectors Wi, i ∈ I, called assignment vectors, as row vectors. Moreover, the
rank constraint ensures that exactly c labels are assigned. These assignment vectors are
computed by numerically integrating the assignment flow, Definition 2.3.1, in the following
elementary geometric setting. The integrality constraint and the rank constraint of (2.71)
is relaxed and the vectors

Wi = (Wi,1, . . . ,Wi,c)
> ∈ S, i ∈ I, (2.72)

are discrete probability measures on the set of labels indexed by J , but still called
assignment vectors. The vectors Wi, i ∈ I are points on the Riemannian manifold
(recall (1.1))

(S, g), S = {p ∈ ∆c : p > 0} (2.73)

with

1S =
1

c
1c ∈ S, (barycenter) (2.74)
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tangent space

T0 = {v ∈ Rc : 〈1c, v〉 = 0} (2.75)

and trivial tangent bundle TS = S × T0, orthogonal projection

Π0 : Rc → T0, Π0 = ΠT0 = Ic − 1S1>c (2.76)

and the Fisher-Rao metric

gp(u, v) =
∑
j∈J

ujvj

pj
, p ∈ S, u, v ∈ T0. (2.77)

Based on the linear map

Rp : Rc → T0, Rp = Diag(p)− pp>, p ∈ S (2.78)

satisfying

Rp = RpΠ0 = Π0Rp, (2.79)

exponential maps and their inverses are defined as

Exp: S × T0 → S, (p, v) 7→ Expp(v) =
pe

v
p

〈p, e
v
p 〉
, (2.80a)

Exp−1
p : S → T0, q 7→ Exp−1

p (q) = Rp log
q

p
, (2.80b)

expp : T0 → S, expp = Expp ◦Rp, (2.80c)

exp−1
p : S → T0, exp−1

p (q) = Π0 log
q

p
. (2.80d)

We call the linear map (2.78) replicator map because it yields, for any vector field F : S → Rc

that represents affinity measures for the set of labels (2.68), a vector field RpF on S and
in turn the corresponding replicator equation [HS03]

ṗj =
(
RpF (p)

)
j

= pj
(
Fj(p)− Ep[F ]

)
= pjFj(p)− 〈p, F (p)〉pj , j ∈ J . (2.81)

If F = ∇E is derived as Euclidean gradient of a potential E, then RpF (p) = gradS E is the
corresponding Riemannian gradient with respect to the Fisher-Rao metric (2.77) [ÅPSS17,
Prop. 1].

Furthermore, the map Exp corresponds to the e-connection of information geometry,
rather than to the exponential map of the Riemannian connection [AN00]. Accordingly,
the geodesics with respect to the affine e-connection (2.80a) are not length-minimizing.
But they provide a close approximation [ÅPSS17, Prop. 3] and are more convenient for
numerical computations. In particular, all simplex constraints (normalization of assignment
vectors as discrete distributions) are smoothly ‘built in’. Yet, unlike the geometry induced
by traditional barrier functions (see, e.g., [NT02]), the information geometry underlying
the assignment flow W (t) entails that it may – and in fact does [ZZS20] – evolve arbitrarily
close to the boundary of the assignment manifold so as to determine unambigous label
assignments for t large enough.

Remark 2.3.1. Applying the map expp to a vector in Rc = T0 ⊕ R1c does not depend on
the constant component of the argument, due to (2.79).

Finally, the assignment manifold is defined as

(W, g), W = S × · · · × S. (n = |I| factors) (2.82)

Points W ∈ W are row-stochastic matrices W ∈ Rn×c with row vectors Wi ∈ S, i ∈ I that
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represent the assignments (2.69) for every i ∈ I. We set

T0 = T0 × · · · × T0 (n = |I| factors) (2.83)

with tangent vectors V ∈ Rn×c, Vi ∈ T0, i ∈ I. All the mappings defined above factorize
in a natural way and apply row-wise, e.g. ExpW = (ExpW1

, . . . ,ExpWn
) etc.

2.3.2. Assignment Flow

Based on (2.67) and (2.68), the distance vector field

DF ;i =
(
dF (fi, f

∗
1 ), . . . , dF (fi, f

∗
c )
)>
, i ∈ I (2.84)

is well-defined. These vectors are collected as row vectors of the distance matrix

DF ∈ Rn×c+ . (2.85)

The likelihood map and the likelihood vectors, respectively, are defined as

Li : S → S, Li(Wi) = expWi

(
− 1

ρ
DF ;i

)
=

Wie
− 1
ρ
DF;i

〈Wi, e
− 1
ρ
DF;i〉

, i ∈ I, (2.86)

where the scaling parameter ρ > 0 is used for normalizing the a-priori unknown scale of
the components of DF ;i that depends on the specific application at hand.

A key component of the assignment flow is the interaction of the likelihood vectors
through geometric averaging within the local neighborhoods (2.70). Specifically, using the
weights

Ωi =
{
wi,k : k ∈ Ni, wi,k > 0,

∑
k∈Ni

wi,k = 1
}
, i ∈ I, (2.87)

the similarity map and the similarity vectors, respectively, are defined as

Si : W → S, Si(W ) = ExpWi

( ∑
k∈Ni

wi,k Exp−1
Wi

(
Lk(Wk)

))
, i ∈ I. (2.88)

If ExpWi
were the exponential map of the Riemannian (Levi-Civita) connection, then the

argument inside the brackets of the right-hand side would just be the negative Riemannian
gradient (2.55) with respect to Wi of the center of mass objective function (2.54) comprising
the points Lk, k ∈ Ni, i.e. the weighted sum of the squared Riemannian distances between
Wi and Lk. Informally speaking we have the interpretation: Si(W ) moves Wi towards the
geometric mean of the likelihood vectors Lk, k ∈ Ni. Since ExpWi

(0) = Wi, this mean is
equal to Wi if the aforementioned gradient vanishes.

After having described all required building blocks, we can state Definition 2.3.1 of a
smooth dynmical system for supervised data labeling.

Definition 2.3.1 (Assignment Flow). Let the similarity map S(W ) be based on the
likelihood map L(W ) defined in (2.88), (2.86) and a field of distances DF ∈ Rn×c+ in (2.84)
be given. Then, the assignment flow is induced by the system of nonlinear ODEs

Ẇ = RWS(W ), W (0) = 1W , (2.89a)

Ẇi = RWiSi(W ), Wi(0) = 1S , i ∈ I, (2.89b)

where 1W ∈ W denotes the barycenter of the assignment manifold (2.82).

The system (2.89a) collects all systems (2.89b), for every vertex i ∈ I. The latter systems
are coupled within local neighborhoods Ni due to the similarity vectors Si(W ) given by
(2.88).
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2.3.3. Geometric Integration

The solution W (t) ∈ W is numerically computed by geometric integration of the system of
ODEs (2.89a) and determines a labeling W (T ) ∈ Wc

∗ for sufficiently large T after a trivial
rounding operation. There exists a variety of geometric integration methods [HLW06].
However, in particular, the Lie group method [IMNZ00] is very suitable for our scenario.
The application of a Lie group method presumes a Lie group G together with an action
Λ: G×M→M defined on a manifold M.

In our setting of the assignment flow we identify G = T0 with the flat tangent space and
define the action Λ: T0 × S → S as

Λ(v, p) = expp(v), v ∈ T0, p ∈ S, (2.90)

which satisfies the following properties

Λ(0, p) = p and Λ(v1 + v2, p) = Λ(v1,Λ(v2, p)). (2.91)

Then the Lie group method yields the following tangent space parametrization of the
assignment flow.

Proposition 2.3.1 (Tangent Space Parametrization [ZSPS20]). The solution W (t) of the
assignment flow (Definition 2.3.1) emanating from any W (0) = W0 admits the representa-
tion

W (t) = expW0

(
V (t)

)
, (2.92)

where V (t) ∈ T0 solves

V̇ = Π0S
(

expW0
(V )
)
. (2.93)

Since (2.93) is a system of ODEs in a vector space, we can apply any integration method
from the Euclidean setting. In this thesis we only consider the simplest scheme, the
geometric Euler method. This explicit scheme with fixed step-size h > 0 reads

W
(k+1)
i = exp

W
(k)
i

(
hS(W (k))

)
, i ∈ I, (2.94)

which ensures that the assignment flow, Definition 2.3.1, evolves properly on the assignment
manifold W. We refer to [ZSPS20] for a detailed evaluation of more advanced methods
including schemes with adaptive stepsize selection.

2.4. Data Clustering

Here, we review basic concepts of supervised and unsupervised data clustering, that are
required in the subsequent chapters of this thesis.

2.4.1. Scatter Matrices

We will use the following basic concepts of statistical pattern recognition [DK82] for
interpreting self-assignment flows from a corresponding angle in Section 5.4.4. Let

Fn = {fi ∈ Rd, i ∈ I} (2.95)

denote given data in terms of feature vectors in a Euclidean space. Suppose these data are
classified corresponding to the partition

I =
⋃̇

j∈[c]
Ij , |Ij | = nj ,

∑
j∈[c]

nj = n = |I|, c ∈ N, (2.96)
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that is, datum fi belongs to class j iff i ∈ Ij .
We define the empirical quantities

Pj =
nj
n
, j ∈ [c] (prior probabilities) (2.97a)

mj =
1

nj

∑
i∈Ij

fi, j ∈ [c] (class-conditional mean vectors) (2.97b)

m =
∑
j∈[c]

Pjmj =
1

n

∑
i∈[n]

fi (mean vector) (2.97c)

and the scatter matrices (empirical covariance matrices)

St =
1

n

∑
i∈[n]

(fi −m)(fi −m)>, (2.98a)

Sw =
∑
j∈[c]

Pj ·
1

nj

∑
i∈Ij

(fi −mj)(fi −mj)
> =

1

n

∑
j∈[c]

∑
i∈Ij

(fi −mj)(fi −mj)
>, (2.98b)

Sb =
∑
j∈[c]

Pj(mj −m)(mj −m)>. (2.98c)

Sw is called the within-class scatter matrix, whereas Sb is called the between-class
scatter matrix. St is called the total scatter matrix since

St = Sw + Sb, (2.99)

as an elementary computation shows.

In supervised scenarios the class-label assignments i ∈ Ij are known and the decomposi-
tion (2.99) can be computed. Assuming Sw has full rank, a basic objective for dimension
reduction by extracting lower-dimensional features from the data Fn is then given by the
class-separability measure

tr(S−1
w Sb). (2.100)

Defining the features by Y >x, for some matrix Y ∈ Rd×c to be determined, transforms
(2.100) to tr((Y >SwY )−1Y >SbY ). Maximizing this objective with respect to Y simultane-
ously maximizes the between-class variation and minimizes the within-class variation. The
column vectors of the optimal Y are given by dominant generalized eigenvectors of the
matrix pencil (Sb, Sw). The map Y >x to a lower-dimensional space preserves the structure
of the data, as represented by the scatter matrices Sw, Sb, as much as possible.

2.4.2. Sketching Large Affinity Matrices

In order to cope with large-scale scenarios, we will have to compress large symmetric
and positive semi-definite matrices K ∈ Sn with K � 0. The problem is to obtain a
computationally feasible approximation of the best rank-` approximation

K` = U1D`(K)U>1 , `� n, (2.101)

where D` and U1 ∈ Rn×` contain the dominant eigenvalues and eigenvectors of the spectral
decomposition K = UD(K)U>. Computing (2.101) directly for large n using the Singular
Value Decomposition (SVD) is too expensive. Computationally feasible approximations
[GM16] yield the compressed matrix

K̂` = CA†C> (2.102a)
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parametrized by a sketching matrix S ∈ Rn×` with

C = KqS, A = S>K2q−1S, q ∈ N (2.102b)

which hence has rank at most `. A† is the Moore-Penrose generalized inverse of A and
q ∈ {1, 2, 3} is a small integer in practice.

In this work, we confine ourselves to the following computationally cheap version of this
method for computing (2.102a), based on uniform sampling of ` columns directly from K.
Assuming w.l.o.g. that they form the first ` columns of K, the corresponding partition
[n] = [`] ∪

(
[n] \ [`]

)
and S =

(
I`
0

)
yields with q = 1

K =

(
A B1

B1 B2

)
, C =

(
A
B1

)
, (2.103)

and using AA†A = A,

K̂` =

(
A
B1

)
A†
(
A B1

)
=

(
A AA†B1

B1A
†A B1A

†B1

)
. (2.104)

Assuming that A has full rank, we obtain the classical Nyström extension

K̂` =

(
A B1

B1 B1A
−1B1

)
(2.105)

introduced in machine learning by [WS01], studied much earlier in linear algebra – see,
e.g., the Schur compression matrix and references in [And79] – and analyzed by [DM05].

Choosing q > 1 is more expensive due to the multiplication of the large matrix K of
(2.102b) but yields in theory a better approximation of (2.101) by (2.102a) with respect
to the spectral norm. Further improvement is possible by randomly mixing the columns of
K before sampling a subset of them. Specifically, the sketching matrix S is given by

S =

√
n

`
DRHR, (2.106)

where DR ∈ Rn×n is a diagonal matrix of Rademacher random variables, i.e. Dii = +1 or
Dii = −1 each with probability 1

2 , H is the normalized orthogonal matrix corresponding
to the fast Hadamard transform, and R ∈ {0, 1}n×` selects the columns of K: Rij = 1 iff
the ith column of K is the jth column among the selected ` columns.

2.4.3. Greedy k-Center Metric Clustering

In order to handle large-scale scenarios, the following simple but effective algorithm from
[Har11] can be employed for data reduction in a preprocessing step. The algorithm
approximates the k-center clustering along with a performance guarantee (2-approximation)
and only requires linear complexity O(nc) with respect to the (large) number of data points
n. By using a min-max objective (see (2.108) below), selected data points are evenly spread
among all data points and hence do not introduce a bias beforehand.

The task of k-center clustering is as follows. Given data points Fn from a metric
space (F , dF ), determine a subset

Fc = {fj : j ∈ J } ⊂ Fn, |J | = c. (2.107)

that solves the combinatorially hard optimization problem

E∗∞ = min
Fc⊂Fn,|Fc|=c

E∞(Fc), E∞(Fc) = max
f∈Fn

dF (f,Fc), (2.108)

where dF (f,Fc) = minf ′∈Fc dF (f, f ′).
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2.5. Discrete Tomography

A greedy approximation is computed as follows. Start with an initial point f1,
e.g. chosen randomly in Fn. Then select the remaining c− 1 points f2, . . . , fc successively
by determining the point that is most distant from the current subset of already selected
points, to obtain a set Fc that is a 2-approximation E∞(Fc) ≤ 2E∗∞ of the optimum (2.108)
[Har11, Thm. 4.3]. As a consequence, the subset of c points of Fc are almost uniformly
distributed within Fn, as measured by the metric dF .

2.5. Discrete Tomography

The main goal of computed tomography (CT) [NW01] is to visualize the internal
structure of an object without damaging it. In this thesis we only consider objects in the
plane R2. However, the method can be extended to higher dimensions, like volumes, in a
straightforward way. The aquired measurements are obtained by exploiting the interaction
between the object and energetic particles. We assume that the measurements consist of a
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Figure 2.1.: Discrete tomographic setup. The acquisition process of the measurements
b ∈ Rm is given by different line integrals from different projection angles over the object in
investigation. Moreoever, the known projection matrix A ∈ Rm×n describes the geometric
setup of the acquisition process. As a consequence, the reconstruction problem of discrete
tomography amounts in solving the system of linear equations Au = b to recover the unknown
image u with intensities restricted to the discrete set F∗ = { , , }.

finite set of parallel and equidistant projection beams such that the whole image domain is
covered for each of the equiangular projection angles between 0 and π. All tomographic
measurements are collected by the vector b ∈ Rm where m is the number of measurements.
The given projection matrix A ∈ Rm×n encodes the imaging geometry and each entry aij
corresponds to the length of the line segment of the i-th projection ray passing through the
j-th pixel in the image domain. Consequently, tomographic reconstruction amounts to
solving the linear system of equations Au = b and the reconstructed image is represented
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2. Preliminaries

by the vector u ∈ Rn where n is the number of pixels.
The field of discrete tomography [HK99] assumes that the reconstructed image only

take values from a finite set of intensities, which may be given beforehand as prior knowledge.
This restriction induces a strong regularization effect, since the search space of feasible
solutions is drastically reduced. Hence the reconstructed image u represents a piecewise
constant function

u ∈ Fn∗ , F∗ := {f∗1 , . . . , f∗c } ⊂ [0, 1], (2.109)

where u is restricted to a finite range and we assume that F∗ forms an ordered set with
values that are normalized between 0 and 1. Therefore, our main focus lies on solving the
discrete reconstruction problem

Au = b ∧ ui ∈ F∗, ∀ i ∈ [n], (2.110)

and on effectively exploiting additional prior knowledge, given in terms of F∗. Figure 2.1
gives an overview of the discrete tomography setup. Moreoever, in discrete tomography,
it is usually assumed to have only a few projection angles given, i.e. there are fewer
measurements m� n available than pixels n. An important special case is binary discrete
tomography, where the reconstructed image is restricted to F∗ = {0, 1}. Gardner [GGP99]
proved that the complexity of the discrete reconstruction problem is NP-complete already
in the binary case for more than two projection angles.
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CHAPTER 3

Non-Smooth Multilabel Methods for
Tomography Reconstruction

3.1. Introduction and Overview

This chapter deals with a challenging generalization of the multilabel problem. Given an
image, the multilabel problem consists of assigning an optimal label from a finite set of
labels (prototypes) to each pixel of a spatial domain. The set of prototypes is pre-specified
and constitutes a strong prior knowledge. The optimality of a label configuration is specified
by a minimum energy criterion over all admissible label configurations. Usually, discrete
label decisions are relaxed to probability vectors (assignments). Additionally, convex
relaxations [ZGFN08; LBS09; PCCB09] rely on finding a tractable convex approximation
of the non-convex energy criterion. Subsequently, approximate label inference in large-scale
scenarios can be carried out by efficient convex optimization techniques like the Chambolle
Pock primal-dual (PD) algorithm [CP11].

Here, we are considering a generalization of the multilabel problem, where the image
to be labeled cannot be observed directly. Instead indirect measurements related by a
linear operator are available. Hence, the task is to find a discrete labeling which is a
solution of an inverse problem simultaneously. Consequently, the multilabel problem with
indirect measurements is essentially more difficult than the multilabel problem with direct
measurements in general.

One main application in this setting is non-binary discrete tomography reconstruc-
tion [HK99; NW01] of images u ∈ Rn from a small number of noisy measurements given
by

b = Au+ ν ∈ Rm. (3.1)

The measurements correspond to line integrals that sum up all pixel-values (absorptions)
over each ray transmitted through the object. Thus, the given projection matrix A ∈ Rm×n

encodes the imaging geometry. Applications range from medical imaging [BSLB11] to
natural sciences and industrial applications, like non-destructive material testing [HFU08].
Many situations require to keep the number of measurements as low as possible, which
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3. Non-Smooth Multilabel Tomography

leads to a small number of projections and hence to a severely under-sampled (ill-posed)
reconstruction problem. To cope with such problems, the under-sampled projection data b
is compensated by the assumption that the finite range

F∗ := {f∗1 , . . . , f∗c } ⊂ [0, 1], (3.2)

of the reconstructed function u is known beforehand. Accordingly, discrete tomography
reconstruction amounts to jointly solving a system of linear equations and labeling the
solution.

To avoid the combinatorial nature and complexity of the discrete optimization problem,
it is common to use convex and non-convex relaxations as approximations. A natural
approach is to drop the discrete constraints completely and extend the feasible set F∗ to its
convex hull. However, this necessitates a subsequent rounding step which is which is hard
to control. The solution of the relaxed problem with possibly intermediate values x /∈ F∗
is projected onto the set of admissible discrete solutions. More sophisticated two-step
approaches employ a standard multilabel formulation where the already reconstructed
image serves as input. However, these two-step approaches suffer from two major draw-
backs. The reconstruction process is decoupled from the labeling process, such that the
reconstruction method cannot exploit the crucial prior knowledge that the solution only
takes values in the finite set F∗. In addition, the resulting labeling after the second step
is not necessarily consistent with the linear projection constraints. Therefore, our main
concern is to effectively exploit the additional prior knowledge in terms of F∗ already during
the reconstruction process. Moreover, we are interested in solving large-scale problem
instances by employing convex optimization techniques.

Our starting point are established convex relaxations of the multilabel problem with a
Potts prior. First we lift the non-local tomographic projection constraints to probability
vectors which encode discrete label decisions. This allows to incorporate information from
the indirect measurements into the multilabel problem. However, the back-projection
of the indicator variables to gray-values introduces non-integral solutions and results in
a very loose relaxation. In other words, the lifted constraints only determine the pixel
value but do not indicate how the indicator variables should realize this value (similar to
estimating a vector given only its magnitude). A straightforward remedy is to consider an
additional unary data term for pixelwise local decisions which depends on the last solution
iteratively. This naive fixed-point iteration motivates a non-convex discretization term in
order to avoid these unwanted effects and penalize convex combinations of labels. Finally,
the proposed variational approximation for joint reconstruction and labeling is non-smooth
and non-convex.

The numerical optimization is based on the difference of convex functions (DC) framework.
Our proposed energy admits the decomposition into a convex part and a concave part,
corresponding to the non-convex discretization term. The resulting algorithm recovers the
naive fixed-point iteration, which amounts to solving a sequence of convex optimization
problems, provably converging to a stationary point of the proposed non-convex energy.

We also propose a suitable rounding procedure as a post-processing step, since we have
relaxed the integrality constraints.
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Finally, in a comprehensive numerical evaluation we compare the proposed approach to
state-of-the-art approaches from literature and demonstrate the superior reconstruction
performance of our approach, even in noisy scenarios with only very few projection angles.

Organization. The remainder of this chapter is organized as follows:

• We review the related work on binary and non-binary discrete tomography (Sect. 3.2).

• We introduce the combinatorial multilabel problem with indirect measurements
and Potts regularization for simultaneous reconstruction and labeling for discrete
tomography (Sect. 3.3).

• We reformulate the non-local projection constraints in terms of probability vectors
(label assignments) as a first step. Next, we motivate and derive a non-convex
discretization term to exclude non-integral solutions (Sect. 3.4).

• We propose a non-smooth and non-convex variational approximation to the combina-
torial multilabel problem with indirect measurements (Sect. 3.4).

• We work out an optimization algorithm to minimize the proposed non-smooth and
non-convex energy based on the DC framework. The resulting algorithm recovers the
naive fixed-point iteration, which solves a sequence of convex problems (Sect. 3.5).

• Finally, we numerically evaluate and compare the proposed approach with state-of-
the-art methods for non-binary tomography reconstruction on standard test-datasets
with only a few projection angles (Sect. 3.6).

3.2. Related Work

In this section, we review the related work on discrete tomography. Discrete tomogra-
phy considers either binary or non-binary (multivalued) problems. The latter ones are
considerably more involved.

Regarding binary discrete tomography, Weber et al. [WSH03; SSWH05] proposed to
combine a quadratic program with a non-convex penalty which gradually enforces binary
constraints. In our previous work [KPSZ15] we showed how a binary discrete graphical
model and a sequence of s-t graph-cuts can be used to take into account the affine projection
constraints and to recover high-quality reconstructions.

Regarding non-binary discrete tomography, an extension of the latter approach is not
straightforward due to the nonlocal projection constraints. Weber [Web09, Chapter 6]
proposed a non-convex term for non-binary discrete tomography which we will derive in a
natural way in the present work. However, Weber’s approach differs with respect to the
data term for the projection constraints, regularization and optimization, and additionally
requires parameter tuning.

Because u is assumed to be piecewise constant, an obvious approach is to consider
sparsity promoting priors. The authors in [SWFU15] proposed a dynamic programming
approach for minimizing the `0-norm of the gradient. However, the set F∗ of feasible
intensities is not exploited. In the convex setting, the integrality constraints are dropped
and priors like the `1-norm or the total variation (TV) are used [SP08; GBB+12; DPSS14],
with a post-processing step to round the continuous solution to a piecewise constant one.
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This approach connects discrete tomography and the fast evolving field of compressed
sensing with corresponding recovery guarantees [DPSS14]. Again, the prior information
of the range of the image to be reconstructed is not involved in the optimization process.
Next, we focus on methods that make direct use of the set F∗ during the reconstruction
process.

A first step towards incorporating the prior information of discrete labels was done
in our preliminary work [ZKS+16], where we combined a total variation formulation for
reconstruction with a non-convex coupling term to enforce discrete labels of the solution.

Tuysuzoglu et al. [TKS+15] casted the non-binary discrete reconstruction problem into
a series of submodular binary problems within an α-expansion approach by linearizing the
`2-fidelity term around an iteratively updated working point. This local approximation
discards a lot of information, and a significantly larger number of projections is required to
achieve high-quality reconstructions.

Maeda et al. [MFKI10] suggested a probabilistic formulation which couples a continuous
reconstruction with the Potts model. Alternating optimization is applied to maximize
the a posteriori probability locally. However, there is no guarantee that these alternating
continuous and discrete block coordinate steps converge.

Ramlau et al. [KR13] investigated the theoretical regularization properties of the piecewise
constant Mumford-Shah functional [MS89] applied to linear ill-posed problems. In earlier
work [RR07], they considered discrete tomography reconstruction using this framework.
The difficult geometric optimization of the partition is carried out by a level-set approach
and the intensities F∗ were additionally estimated in an alternating fashion. By contrast,
our approach is based on a convex relaxation of the perimeter regularization and the set
F∗ is assumed to be known beforehand.

Varga et al. [VBN12] suggested a heuristic algorithm which is adaptively combing an
energy formulation with a non-convex polynomial in order to steer the reconstruction
towards the feasible values.

Batenburg et al. [BS11] proposed the Discrete Algebraic Reconstruction Technique
(DART) algorithm which starts with a continuous reconstruction by a basic algebraic
reconstruction method, followed by thresholding to ensure a piecewise constant function.
These steps interleaved with smoothing are iteratively repeated to refine the locations
where u jumps. This heuristic approach yields good reconstructions in practice but cannot
be characterized by an objective function that is optimized.

We consider [BS11; VBN12] as state-of-the-art approaches for experimental comparison.

3.3. Reconstruction by Multilabeling

In this section, we reformulate the discrete tomography reconstruction problem (3.4) as
a combinatorial multilabel problem with indirect measurements. This means we cannot
directly observe the quantity of interest u ∈ Rn, the image to be labeled. However, we
assume that we are able to observe the quantity b ∈ Rm, which is related by the linear
operator A : Rn → Rm to the reconstructed image. In literature the multilabel problem
with indirect measurements is a less considered variant since it is essentially more difficult.

In practice, we assume that there are less observations (measurements) than pixels
m� n and hence that the corresponding equation system is under-determined. We also
require full row-rank of the operator A, i.e. rank(A) = m. To cope with such problems, a
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common assumption in the field of discrete tomography [HK99] concerns knowledge of the
finite range of

u ∈ Fn∗ , F∗ := {f∗1 , . . . , f∗c } ⊂ [0, 1], (3.3)

that is, u represents a piecewise constant function. The discrete set of labels (prototypes)
F∗ are c admissible gray-values, which form an ordered set and are normalized between 0
and 1. Therefore, our main focus is to effectively exploit this additional prior knowledge,
the set of labels F∗ together with the projection constraints, in order to solve the discrete
reconstruction problem

Au = b ∧ ui ∈ F∗, ∀ i ∈ [n]. (3.4)

Reversing the forward operator A, even with the additional constraint that the recon-
structed solution has to be a piecewise constant function, is severely ill-posed and requires
regularization. A common choice is the Potts model [Pot52],

R(u) = ‖∇u‖0 := |{i ∈ [n] | (∇u)i 6= 0}|, (3.5)

for sparse gradient regularization which favors spatially coherent and piecewise constant
images. Therefore regularization is incorporating further prior knowledge and is stabilizing
the inversion by further reducing the search space of admissible solutions.

In presence of noise the existence of a solution is no longer guaranteed, since the corrupted
measurements b might not be within the range of A. Hence, we use the more general
constraints

b(ε) ≤ Au ≤ b(ε), (3.6)

where ε is an upper bound of the noise level. As a result, the discrete reconstruction
problem can be rewritten as finding a minimizer of the following energy formulation

min
u
E(u), E(u) = λ · ‖∇u‖0 (3.7a)

s.t. b(ε) ≤ Au ≤ b(ε) ∧ ui ∈ F∗, ∀ i ∈ [n]. (3.7b)

We refer to problem (3.7a) as a multilabel problem with indirect measurements with Potts
regularization. The regularization factor λ ≥ 0 is acting as a trade-off between how much
we trust the observations (data term) and how much we rely on the model assumption
(regularization term).

From the viewpoint of graphical models, the system of affine inequalities induces (very)
high-order potentials, a possibly fully connected graph structure. These high-order interac-
tions induced by the non-local constraints result in a non-standard labeling problem which
becomes intractable for discrete approaches and larger problem sizes. Therefore, in the
next section, we adopt the strategy of solving a sequence of convex relaxations in order
to minimize an overall non-convex variational energy, which properly approximates the
original problem.

3.4. Non-Convex Variational Approximation

In this section we develop a non-smooth and non-convex variational approximation of
the combinatorial multilabel problem with indirect measurements (3.7a). The energy
formulation (3.7a) is highly non-convex due to the l0-norm regularization. In addition,
the condition that the solution is restricted to a discrete set of admissible gray-values,
constitutes a non-convex constraint. Therefore, our starting point are the established

31



3. Non-Smooth Multilabel Tomography

convex relaxation techniques of the multilabeling problem [ZGFN08; LBS09; PCCB09]
with a given direct observation u0. These relaxations are lifting the discrete label decisions
to a higher dimensional space, such that each label corresponds to a unit-vector, which
allows to consider the convex hull of these vertices. Consequently, the labeling problem is
encoded by probability vectors, which form a convex set. In particular we adapt the most
straightforward convex relaxation by Zach et al. [ZGFN08], which is based on layer-wise
total variation (TV). Minimizing the energy in (3.8a) below with respect to W over the
set of relaxed indicator vectors (3.8b) assigns to each given pixel in u0 a label from the set
F∗ := {f∗1 , . . . , f∗c } in a probabilistic way. The discretized total variation, weighted by λ,
and the simplex constraints in the definition of W constitute a basic convex relaxation of
the integrality constraints with respect to W , which reads

E(W,u0) =

n∑
i=1

c∑
j=1

Wi,j

(
u0
i − f∗j

)2
+ λ

c∑
j=1

‖∇Wj‖1 (3.8a)

s.t. W ∈ W =

{
W ∈ [0, 1]n×c :

c∑
j=1

Wi,j = 1, ∀ i ∈ [n]

}
. (3.8b)

Next, we add the tomographic projection constraints b ≤ Au ≤ b to the relaxed energy
(3.8a) by transforming the indicator variables W back to their corresponding intensities
with the linear assignment operator

PF∗ :W → conv(Fn∗ ), W 7→ PF∗(W ) = (In ⊗ F ∗>) vec(W ) = WF ∗, (3.9)

where F ∗ := (f∗1 , . . . , f
∗
c )> is the vector of all admissible gray-values. The assignment

operator preserves convexity of the resulting energy

E(W,u0) =

n∑
i=1

c∑
j=1

Wi,j

(
u0
i − f∗j

)2
+ λ

c∑
j=1

‖∇Wj‖1

+ δRm+ (APF∗(W )− b) + δRm− (APF∗(W )− b) + δW(W ),

(3.10)

where the constraints b ≤ APF∗(W ) ≤ b and W ∈ W are implemented by indicator
functions δRm+ and δRm− .

In tomography, no image u0 is given beforehand. However, dropping the unary data term
in Eq. (3.10) will result in a very loose relaxation, since the constraints are feasible for all
convex combinations of prototypes f∗j . In other words, the constraints only determine the
value of a pixel but do not indicate how the indicator variables should realize this value
(similar to estimating a vector given only its magnitude). This is reflected in the fact, that
the assignment operator is no longer injective for the non-binary case, after relaxing the
unit-vectors to probabilities. Hence we are introducing a lot of additional non-integral
solutions. Proposition 3.4.1 states, that the assignment operator is bijective for c ≤ 2.

Proposition 3.4.1 (Bijectivity of the Assignment Operator). Let F∗ = {f∗1 , . . . , f∗c } ⊂
[0, 1] with c = |F∗| and the assignment operator u = PF∗(W ) in (3.9). Then, the linear
mapping PF∗ is bijective if and only if c ≤ 2.

Proof. Without loss of generality we can consider the case of a single pixel, n = 1.
The convex hull conv(F∗) is an affine (c-1) simplex if the set of vertices F∗ is affinely
independent. Since the vertices f∗c ∈ R are scalars, only c ≤ 2 are affinely independent.
Then, the canonical mapping PF∗ from the standard simplex to the affine simplex is bijective
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3.4. Non-Convex Variational Approximation

since they are homeomorphic if and only if they have the same number of vertices.

This also explains why the binary case is substantially easier than the non-binary case,
since the data term is unambiguous and the convex relaxation is tight. However, despite
the drawback of introducing artificial solutions, we still want to employ the linear mixing
model u = PF∗(W ). In order to compensate for these unwanted effects, we have to exclude
non-integral solutions in order to stabilize the inversion of the assignment operator in
the non-binary case. Consequently, a unary term (local decisions) is required to provide
information about how the represented gray-values are to be realized.

A straightforward approach would be to start with some initial reconstruction u0,
e.g. computed using another reconstruction method, followed by iteratively applying the
described approach. From a mathematical perspective, this procedure amounts to the
following fixed point iteration

W (k+1) = arg min
W

E
(
W,PF∗(W

(k))
)
, (3.11)

where at every iteration a convex problem has to be solved whose solution updates the
unary data term. Therefore, in each iteration we are simultaneously reconstructing from
the tomographic constraints and labeling the previous solution. This immediately raises
the question whether the iteration converges and which overall energy is actually optimized?

To address these questions, we first eliminate u0 in a principled way. Note that E(W,u0)
in (3.10) is differentiable with respect to the second argument. Hence we invoke Fermat’s
(first order) optimality condition, which reads

∇uE(W,u) = 0 ⇔ u∗ = PF∗(W ). (3.12)

This means that the optimal u∗ must be equal to the weighted average of the labels f∗j
which is exactly the assignment operator. Substituting the optimality condition (3.12)
back into the energy (3.10) results in the final version of the proposed energy which only
depends on W ,

E(W ) =
n∑
i=1

c∑
j=1

Wi,j

(
(PF∗(W ))i − f∗j

)2
+ λ

c∑
j=1

‖∇Wj‖1

+ δRm+ (APF∗(W )− b) + δRm− (APF∗(W )− b) + δW(W ).

(3.13)

This new energy formulation, Eq. (3.13), is clearly non-convex because of the products
in the first term which measures the discreteness of W . Therefore, we call this term
discretization term and define it by

D(W ) :=
n∑
i=1

c∑
j=1

Wi,j

(
(PF∗(W ))i − f∗j

)2
, (3.14)

where the i-th summand of (3.14) reads
c∑
j=1

Wi,j

( c∑
l=1

Wi,lf
∗
l − f∗j

)2
=

c∑
j=1

Wi,j(f
∗
j )2 −

( c∑
j=1

Wi,jf
∗
j

)2
(3.15)

which is concave with respect to the vector Wi. Consequently, the term D(W ) given by
(3.14) is concave as well. Figure 3.1 shows a plot of the discretization term D(W ) for one
pixel (n=1) and the discrete set of values F∗ = {0.0, 0.4, 1.0}. We can see, that the minima
are attained at vertices of the simplex which in turn correspond to unit-vectors. The

33



3. Non-Smooth Multilabel Tomography

Figure 3.1.: Visualization of the discretization term D(W ) for the one-pixel case (n = 1),
over the probability simplex ∆c, the vertices correspond to the values F∗ = {0.0, 0.4, 1.0}.
We can see that, the minima are attained at the vertices of the simplex which correspond to
unit-vectors. Moreover, the transition between the lowest label f∗1 = 0.0 and the highest label
f∗3 = 1.0 is penalized the most, which is necessary to avoid convex combinations.

proposed discretization term in (3.14) is compensating unwanted effects resulting from the
weak data term. Consequently, convex combinations of indicator variables yield a higher
energy and hence non-integral solution are excluded (for λ sufficently small). Therefore,
the inversion of the assignment operator in (3.9) is regularized. This concave discretization
term is acting like a unary data term with pixelwise independent decisions in the setting,
where the input image is directly available. Weber [Web09, Chapter 6] proposed this term
for discrete tomography which arises here in a natural way, whereas his overall approach
differs with respect to the data term for the projection constraints, regularization and
optimization. Finally, we have derived a non-convex variational approximation of the
original combinatorial problem (3.7a). In the next section, we exploit the special structure
of the objective function (3.13) to relate and justify the fixed point iteration (3.11) as a
sound and efficient optimization strategy.

3.5. Sequential Convex Optimization

In this section, we aim to find a minimizer of the non-convex energy (3.13) for joint
reconstruction and labeling, which was derived in the previous section. The lack of
convexity makes finding a global optima in a reasonable time challenging. Hence, we
focus on local optimality instead which still is non-trivial. To this end, we construct an
iterative algorithm which converges to a critical point. In order to get a highly adapted
algorithm, which exploits the special problem structure, we reformulate the objective
function (3.13) as a difference of convex functions (DC) program [PE86]. Finally, we justify
the straightforward fixed point iteration (3.11), which solves a sequence of convex problems,
as a sound and efficient optimization algorithm.
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3.5. Sequential Convex Optimization

3.5.1. DC Programming

A large subclass of non-convex optimization problems can be written as a difference of
convex functions (DC). Such DC programs [PE86] can be solved very efficently by the DC
algorithm (DCA). Both together constitute the backbone of non-convex optimization and
global optimization techniques. Accordingly, basic concepts of convex optimization like
duality and KarushKuhnTucker (KKT) conditions were extended to DC functions [Tol78].
The generic form of a DC program is given by

W ∗ = arg min
W

g(W )− h(W ), (3.16)

where g(W ) and h(W ) are assumed to be proper, lower semicontinuous, convex functions.
Based on local optimality conditions and DC duality there exists a simplified version of
the DC algorithm [PH97] for minimizing (3.16). This algorithm guarantees convergence to
a critical point by starting with W 0 ∈ dom(g) and then alternatingly applying the updates

V (k) ∈ ∂h(W (k)) and W (k+1) ∈ ∂g∗(V (k)) (3.17)

until a termination criterion is reached, where g∗ denotes the Fenchel conjugate (Section
2.1.2) of g. The DCA is summarized in Algorithm 3.1. In order to apply the DC algorithm

Algorithm 3.1: Generic DCA

Init: choose any W 0 ∈ dom(g)
while not converged do

V (k) ∈ ∂h(W (k)) (3.18a)

W (k+1) ∈ ∂g∗(V (k)) (3.18b)

k ← k + 1

Output: W ∗ = W (k)

to our non-convex energy E(W ), defined in Eq. (3.13), we rewrite the energy as a DC
function E(W ) = g(W )−h(W ). It is worth mentioning that DCA only depends on the DC
components g and h but not on the objective function itself. Moreover, DC decompositions
are not unique and theoretically a DC function has infinitely many decompositions, each
leading to different instance of DCA. Hence, choosing an appropriate DC decomposition
will have a crucial impact on the speed of convergence, robustness and efficiency of the
DC algorithm. It is still an open question how the optimal DC decomposition for a
given DC program can be found systematically. Of course, this heavily depends on the
problem specific structure and in order to handle large-scale settings it is important that
the sub-problems can be explicitly evaluated or at least solved in an inexpensive iterative
way.

A reasonable and natural decomposition of the energy (3.13) is to set h(W ) = −D(W )
since the discretization term (3.14) is concave by (3.15). We denote by g(W ) the remaining
convex terms from Eq. (3.13).

The second step (3.18b) of Algorithm 3.1 is in general not very applicable in practice
since the Fenchel conjugate of g may not admit a closed form expression. In order to make
the step (3.18b) explicit, we apply the subgradient inversion rule (Lemma 2.1.4) of convex
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3. Non-Smooth Multilabel Tomography

analysis to obtain

W (k+1) ∈ ∂g∗(V (k)) ⇔ V (k) ∈ ∂g(W (k+1)) ⇔ 0 ∈ ∂g(W (k+1))− V (k) (3.19)

which is equivalent to the convex optimization problem

W (k+1) = arg min
W

g(W )− 〈V (k),W 〉. (3.20)

Furthermore, we rewrite (3.20) by strategically adding terms independent from W , which
do not affect the minimizer and get

W (k+1) = arg min
W

g(W )−
(
h(W (k)) + 〈V (k),W −W (k)〉

)
. (3.21)

This immediately reveals the main idea and obvious interpretation of DCA, to approximate
the DC program by a sequence of convex programs. At each iteration k of DCA the concave
part is linearly majorized (by a first-order Taylor expansion if h is differentiable) around
the current iterate W (k).

Since our defined h is differentiable, the first step of (3.17) reads

V (k) ∈ ∂h(W (k)) ⇔ V (k) = −∇D(W (k)), (3.22)

where the Euclidean gradient of D is given by Proposition 3.5.1.

Proposition 3.5.1 (Gradient of Discretization Term). Let D(W ) be defined as

D(W ) =

n∑
i=1

c∑
j=1

Wi,j

(
(PF∗(W ))i − f∗j

)2
. (3.23)

Then the component
(
∇D(W )

)
k,l

of the gradient of D at W with respect to W for pixel

k ∈ [n] and label l ∈ [c] is given by

(∇D(W ))k,l =
∂D(W )

∂Wk,l
=
(
(PF∗(W ))k − f∗l

)2
. (3.24)

Proof. Using PF∗(W )k =
∑c

j=1Wk,jf
∗
j , we compute

∂D(W )

∂Wk,l
=
(
(PF∗(W ))k − f∗l

)2
+ 2

n∑
i=1

c∑
j=1

Wi,j

(
(PF∗(W ))i − f∗j

) ∂

∂Wk,l

(∑
m

Wi,mf
∗
m − f∗j

)
(3.25a)

=
(
(PF∗(W ))k − f∗l

)2
+ 2f∗l

c∑
j=1

Wk,j

(
(PF∗(W ))k − f∗

)
(3.25b)

=
(
(PF∗(W ))k − f∗l

)2
+ 2f∗l

(
(PF∗(W ))k

c∑
j=1

Wk,j −
c∑
j=1

Wk,jf
∗
j

)
(3.25c)

=
(
(PF∗(W ))k − f∗l

)2
+ 2f∗l

(
(PF∗(W ))k · 1− (PF∗(W ))k

)
(3.25d)

=
(
(PF∗(W ))k − f∗l

)2
(3.25e)

Combining equations (3.22) and (3.24) and inserting into equation (3.20) yields

W (k+1) = arg min
W

E
(
W,PF∗(W

(k))
)

(3.26a)

= arg min
W

g(W ) +

n∑
i=1

c∑
j=1

Wi,j

(
(PF∗(W

(k)))i − f∗j
)2
. (3.26b)
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We notice that the DC algorithm, summarized as Algorithm 3.2 below, agrees with the
iteration (3.11), and hence proves its convergence to a stationary point of the non-convex
energy (3.13). This answers the second part of the question raised in the previous section.
We showed the connection between iteratively applying (3.11) (fixed point iteration) and

Algorithm 3.2: DC Fixed Point Algorithm

Init: choose W (0) = 1W
while not converged do

W (k+1) = arg min
W

E
(
W,PF∗(W

(k))
)

(3.27)

k ← k + 1

Output: W ∗ = W (k)

the overall non-convex energy (3.13). Finally, we apply the primal-dual (PD) algorithm
proposed by [CP11] to solve the convex subproblems (3.27). We use the barycenter as an
unbiased initialization, which is natural for variables defined on the probability simplex.

3.5.2. Rounding Step

Recall that the discretization term D(W ) of (3.13) only steers the solution to the finite
set of feasible values F∗, and the integrality constraints are relaxed. As a consequence,
for vanishing regularization parameter λ, the minimizer W will correspond to indicator
vectors Wi that assign a unique label to each pixel i. For larger values of λ which are more
common in practice, the minimizing vectors Wi will generally not be integral. Therefore, a
post-processing step for rounding the solution is required.

We assume that Algorithm 3.2 returns a minimizer W ∗ of (3.13) after termination and
we propose to select a label for each pixel i by solving the local problems

û∗i = arg min
f∗∈F∗

|(PF∗(W ∗))i − f∗|, i ∈ [n], (3.28)

as a post-processing step. Note that this method differs from the common rounding proce-
dure of multilabeling approaches which select the label f∗j if Wi,j = max{Wi,1, . . . ,Wi,c}.

3.6. Experiments

In this section, we illustrate and compare our proposed method to state-of-the-art ap-
proaches which can handle non-binary tomography reconstruction from only a few projec-
tion angles. Specifically, we considered the Discrete Algebraic Reconstruction Technique
(DART ) [BS11] and the energy minimization method from Varga et al. [VBN12] (Varga).
Finally, we denote our proposed joint reconstruction and labeling approach (LayerTV ),
since it is based on the layer-wise total variation, which is directly applied to the indicator
variables. Table 3.1 summarizes all considered approaches.

Implementation details. We implemented the proposed approach (LayerTV) de-
scribed in Section 3.3 with the DC fixed point algorithm 3.2 which minimizes the non-
convex energy (3.13) by a sequence of convex problems. Each subproblem of Algorithm
3.2 was approximately solved using the primal-dual (PD) algorithm [CP11] limited to 1000
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3. Non-Smooth Multilabel Tomography

Shortcut Reference Regularization Implementation

LayerTV (proposed) Eq. (3.13) anisotropic TV ours (MATLAB), Alg. 3.2

DART [BS11] Gaussian filter ASTRA-toolbox [APB+15]

Varga [VBN12] Sobolev semi-norm ours (MATLAB)

Table 3.1.: Overview of the approaches used for a competitive evaluation.

Phantom 1 Phantom 2 Phantom 3 Phantom 4 Phantom 5

Figure 3.2.: The 5 different phantoms used for the numerical evaluation.

iterations or until the primal-dual gap drops below 0.1. The outer iteration was terminated
if the change of the energy between two subsequent iterations, normalized by the number of
pixels, was smaller than 10−5 in the noiseless case and 10−4 in the noisy case. Additionally,
we limited the number of outer iterations to 20. The discrete total variation in (3.13) was
implemented by its anisotropic version. That means a 4-connected neighborhood system
was used and the fully separable l1-norm was applied to the components of the gradient at
each pixel.

For DART we used the publicly available implementation included in the ASTRA-toolbox
[APB+15] and for the method of Varga [VBN12] we used our own implementation in
MATLAB since no public code was available. We tried to use the default parameters of the
competing approaches as proposed by their authors. However, since the test-datasets differ
in size, we slightly adjusted the parameters in order to get best results for every algorithm
and problem instance. Therefore, the parameters were adjusted for each test-dataset but
kept constant over different projection angles.

Data Setup. We adapted the binary phantoms from Weber et al. [WNS+06] to
multivalued test-datasets with more labels, shown as phantom 1,2 and 3 by Figure 3.2.
Phantom 5 in Figure 3.2 was taken from [BS11] and phantom 4 is the well-known Shepp-
Logan phantom [SL74]. We also created noisy scenarios by applying Poisson noise to the
measurements b with a signal-to-noise ratio of SNR = 20 db. The geometric setup of the
projection matrices was created by the ASTRA-toolbox [APB+15], where we used parallel
beam projections along equidistant angles between 0 and 180 degrees. Each entry aij of
the projection matrix A corresponds to the length of the line segment of the i-th projection
ray passing through the j-th pixel in the image domain. The width of the sensor-array was
set to 1.5 times the image size, so that every pixel intersects with a least a single projection
ray and each sensor has the size of a pixel.

Performance measure. For the evaluation we measured the relative pixel error, that
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(a) Phantom 1 (n = 64× 64 pixel, c = 4 labels)

2 4 6 8 10
0.00

0.10

0.20

0.30

projection angles

re
l.

p
ix

el
er

ro
r

2 4 6 8 10

10−1
100
101

projection angles

ru
n
ti

m
e

[s
]

(b) Phantom 2 (n = 256× 256 pixel, c = 5 labels)
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(c) Phantom 3 (n = 256× 256 pixel, c = 8 labels)
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(d) Phantom 4 (n = 256× 256 pixel, c = 6 labels)
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(e) Phantom 5 (n = 512× 512 pixel, c = 3 labels)

2 4 6 8 10
0.00
0.05
0.10
0.15
0.20

projection angles

re
l.

p
ix

el
er

ro
r

2 4 6 8 10
100

102

projection angles

ru
n
ti

m
e

[s
]

LayerTV with noise | DART with noise | Varga with noise

Figure 3.3.: Numerical evaluation of the approaches for the different test-datasets and
increasing (but small) numbers of projections, in the noiseless case (filled markers) and in
the noisy case (non-filled markers), with noise level SNR = 20 db. The relative pixel error
is shown. The proposed approach (LayerTV) gives perfect reconstructions with the smallest
number of projection angles in the noiseless case and also returns high-quality reconstructions
in the presence of noise, compared to the other approaches.
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3. Non-Smooth Multilabel Tomography

is the relative number of erroneously reconstructed pixels compared to the ground truth u∗

Errpxl(u) :=
1

n

n∑
i

d(ui, u
∗
i ); d(x, y) :=

{
0 if x = y,

1 if x 6= y.
(3.29)

This measure was used for the discrete solutions of the algorithms (after rounding).

LayerTV
noiseless

LayerTV
noise case

DART
noiseless

DART
noise case

Varga
noiseless

Varga
noise case

2

3

5

7

10

Figure 3.4.: Visual results of experiment phantom 1.

Results. Figure 3.3 shows all results of the numerical evaluation. For each of the
test-datasets (phantoms 1 - 5), the left plot displays the relative pixel error (after rounding)
for increasing numbers of projection angles. On the right, the corresponding runtime
is shown as a log-scaled plot. For each algorithm two curves are drawn: filled markers
correspond to the noiseless case and non-filled markers correspond to the noisy case.

The results show that the proposed approach returns a perfect reconstruction with the
least number of projection angles in the noiseless case among all approaches. Similar
quality improvements are visible for more challenging noisy scenarios by the proposed
algorithm. In the noiseless case, phantom 1 can be almost perfectly reconstructed from
only 3 projection angles and fully from 4 by the proposed approach whereas DART needs
7 projections to achieve similar reconstruction quality and the method of Varga needs at
least 7 projections for a reasonable reconstruction. These visual differences can be seen in
Figure 3.4. The relative performance of all approaches is similar overall for phantoms 2,
3 and 5, with the exception that the approach of Varga performed better than DART in
the noiseless case of phantom 5. Figure 3.5 shows the results for phantom 4, where our
approach is able to perfectly reconstruct from merely 7 projections in the noiseless case
and returns a good piecewise-constant result in the noisy case.

Regarding the runtime (right plots from Figure 3.3), DART is the fastest followed by
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Figure 3.5.: Visual results of experiment phantom 4.

Varga. The proposed approach clearly requires more runtime to return more accurate
solutions. However, in settings where runtime is crucial, the proposed approach could
easily be parallelized and implemented e.g. in CUDA to run on modern graphics cards.

3.7. Conclusion

In this chapter we have presented a novel non-convex and non-smooth variational approach
for solving the discrete tomography reconstruction problem in the general non-binary case.
We have combined an established convex relaxation of the multilabeling Potts problem
with the non-local tomographic projection constraints. The feasible set of labels is properly
taken into account during the reconstruction process by a non-convex discretization term.
This term naturally emerges when the function to be reconstructed is represented as a
convex combination of gray-values. Moreover, non-integral solutions, introduced by lifting
the projection constraints to indicator variables were successfully excluded. The proposed
energy for joint reconstruction and labeling was reliably and efficiently minimized by the
DC algorithm which provably converges to a stationary point. The resulting algorithm
recovers the naive fixed-point iteration, which amounts to solving a sequence of convex
optimization problems. The reconstruction performance turned out to be superior to the
state of the art.

In the context of this work, an immediate question arises, if the supervised joint
reconstruction and labeling approach can be extended to the unsupervised case. For direct
observations, the generalization of the multilabel problem to unsupervised scenarios is
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3. Non-Smooth Multilabel Tomography

investigated in the last chapter of this work, within the smooth and geometric framework
of the assignment flow. However, the unsupervised setting with indirect measurements,
where neither the prototypes are given beforehand nor the data to be labeled is directly
available, poses a challenging task to be considered as future work.

A different direction of future work can be to explore the connection of he proposed
discretization term (3.14) to spatially continuous variational formulations, which may
indicate potential for further improvement.

Further future work can include improvement of the runtime and focus on theoretical
aspects of this approach.
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CHAPTER 4

Geometric Multilabel Methods for Tomography Reconstruction

4.1. Introduction and Overview

In the previous chapter we have introduced a non-convex variational approximation to
solve a challenging generalization of the multilabel problem. Thereby, the input image
to be labeled is not available directly, however indirect measurements related by a linear
operator are available instead. One key application of this setting is discrete tomography
[HK99], which introduces the problem of reconstructing piecewise constant functions from
projection data, that are taken from few projection angles only. Such extremely ill-posed
inverse problems are motivated by industrial applications, like quality inspection [HFU08].
Regularization of such problems essentially rests upon the fact that the functions to be
reconstructed only take values in a finite set of labels

F∗ := {f∗1 , . . . , f∗c } ⊂ [0, 1]. (4.1)

This is similar to the common image labeling problem in computer vision, with the essential
difference that the image to be labeled is only indirectly observed. Specifically, after
discretization the resulting representation u ∈ Rn and projection data b given by

Au = b s.t. ui ∈ F∗, ∀ i ∈ [n] (4.2)

are observed, where the projection matrix A is known but underdetermined (fewer rows
than columns). Hence, the task is to simultaneously reconstruct an inverse problem and
select for each pixel of the solution one of the labels F∗. This can be considered as a
multilabel problem with indirect measurements which is consequently considerably more
difficult to solve. To avoid the combinatorial nature of such discrete optimization problems,
it is common to encode and relax hard label decisions to discrete probability distributions.

In this chapter we focus on geometric aspects of the multilabel problem in contrast to
Chapter 3. The space of discrete probability distributions over the set of labels for each
pixel constitutes a smooth manifold, the assignment manifold, with the smooth geometry
induced by the Fisher-Rao metric [BR82] on a single simplex. Moreover, information
geometry [Kas89; AC10] bridges geometry with convex analysis by introducing Bregman
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divergences, distance like functions, which locally respect the underlying geometry. This
allows to generalize established convex optimization algorithms to the geometric setting.
The assignment flow (2.89) is based on these smooth geometric concepts to perform image
labeling with direct observations. Therefore, in this chapter we investigate how to adapt
and generalize the geometric building blocks of the assignment flow to handle indirect
measurements as input data. In particular we focus on the following aspects:

• geometric spatial regularization of assignments,

• geometric numerical algorithms by Bregman proximal optimization and

• extension of the geometric setting itself to include the projection constraints.

Finally, we propose two different geometric approaches to joint reconstruction and labeling.
The first part of this chapter is concerned with adapting the approach from Chapter 3

to the geometric setting of the assignment manifold. We propose a non-convex variational
approximation to the combinatorial multilabel problem with indirect measurements in which
the individual building blocks of the energy are motivated by geometric considerations.
Therefore, the regularization term measures the spatial coherence with respect to the
KL-divergence between discrete probability distributions of neighboring pixels. This allows
to incorporate the underlying geometry of relaxed label decisions into the regularization.
In addition, we add an entropy term for uniform rounding towards more discrete labelings
and hence we only require a basic rounding procedure.

The proposed energy admits the decomposition into a convex part and a concave part.
Therefore, we can apply the difference of convex functions (DC) algorithm, which amounts
to solving a sequence of convex optimization problems. Moreover, the optimization algo-
rithm to minimize each convex subproblem exploits the underlying geometry by using the
KL-divergence as a proximity measure for generalized proximal mappings. The resulting
iterated primal-dual algorithm is capable of solving large-scale scenarios efficiently. Finally,
we demonstrate the proposed approach in a comprehensive numerical evaluation and com-
pare it with state-of-the-art approaches from literature. We focus on the key application of
non-binary discrete tomography as well as deblurring and denoising with joint labeling.

The second part of this chapter is concerned with the geometric setting itself. Here we are
going one step further and restrict the assignment manifold to a Riemannian submanifold

Wtomo ⊂ W, (4.3)

satisfying the affine projection constraints. Therefore, the feasible set Wtomo is equipped
with a Hessian Riemannian metric which naturally extends the Fisher-Rao metric of the
assignment manifold. Subsequently, we construct a smooth gradient flow for any smooth
objective function restricted to the submanifold. In addition, we define a corresponding
objective function for joint tomographic reconstruction and label assignment.

We derive an iterated implicit scheme to numerically integrate the resulting tomographic
assignment flow which relies on the Bregman proximal point method. Each convex subprob-
lem is solved approximately by the generalized primal-dual algorithm with KL-divergences
as proximity measure. This also allows to efficiently handle large-scale scenarios. Finally, we
demonstrate the proposed approach in a comprehensive numerical evaluation and compare
it with state-of-the-art approaches from literature.
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Organization. The remainder of this chapter is organized as follows:

• We briefly review the related work on binary and non-binary discrete tomography
(Sect. 4.2).

• We propose a non-convex variational approximation to the combinatorial multilabel
problem with indirect measurements. The spatial regularization is implemented by
considering KL-divergences between pairs of pixels (Sect. 4.3.1).

• We derive an optimization algorithm based on the DC framework to minimize the
variational non-convex energy. Generalized Bregman proximal maps allow to solve
the convex subproblems in a geometric way (Sect. 4.3.2).

• We suggest a converging fixed-point iteration to evaluate the proximal mapping of
the geometric regularizer efficiently (Prop. 4.3.1)

• We propose the tomographic assignment flow as a Riemannian gradient flow on a
submanifold by including the projection constraints and extending the Fisher-Rao
metric in a natural way (Sect. 4.4.1).

• We motivate a suitable objective function to simultaneously perform tomographic
reconstruction and labeling (Sect. 4.4.2).

• We derive an iterated implicit scheme to integrate the tomographic assignment flow
which relies on the Bregman proximal point method (Sect. 4.4.3).

• Finally, we numerically evaluate and compare the proposed approaches with state-of-
the-art methods for non-binary tomography reconstruction on standard test-datasets
with only a few projection angles (Sect. 4.3.3 and 4.4.4)

4.2. Related Work

A natural class of approaches is based on minimizing convex sparsifying functionals de-
pending on u (e.g. total variation) subject to the affine subject constraints (3.4), but
without the labeling constraints [SP08; GBB+12; DPSS14]. Unless sufficient conditions for
unique recovery are met, in terms of the number of projection measurements relative to
the complexity of the discontinuity set of u [DPSS14], the performance of the necessary
rounding post-processing step is difficult to control. Likewise, a binary discrete graphical
model was adopted by [KPSZ15], and a sequence of s-t graph-cuts was solved to take into
account the affine projection constraints. An extension to the non-binary case (multiple
labels) seems to be involved. The authors of [SWFU15] minimize the `0-norm of the
gradient directly by a dynamic programming approach, but do not exploit the set F∗ of
feasible labels for regularization.

A first step towards incorporating the prior information of discrete labels was done
in our preliminary work [ZKS+16], where we combined a total variation formulation for
reconstruction with a non-convex coupling term to enforce discrete labels of the solution.
Other approaches that aim to enforce the labeling constraints by continuous non-convex
optimization include [WSH03; SSWH05]. In this work, the approach proposed in Chapter
3 also constitutes a non-convex variational formulation.
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Unlike our two geometric approaches proposed below, which limit the degrees of freedom
by restricting the feasible set to a Riemannian manifold, these approaches work in the
higher-dimensional ambient Euclidean space and hence are more susceptible to poor
initializations and local minima.

Further approaches that define the state of the art include [VBN12; BS11]. The authors
of [VBN12] proposed a heuristic algorithm that adaptively combines an energy formulation
with a non-convex polynomial representation, in order to steer the reconstruction towards
the feasible label set. Batenburg et al. [BS11] proposed the Discrete Algebraic Reconstruction
Technique (DART) algorithm which starts with a continuous reconstruction by a basic
algebraic reconstruction method, followed by a thresholding operation. These steps,
interleaved with smoothing, are iteratively repeated to refine the locations of boundaries.
This heuristic approach yields good reconstructions in practice, but cannot be characterized
by an objective function which is optimized.

We regard [BS11; VBN12; ZPSS16] as state-of-the-art approaches in our experimental
comparison.

4.3. Geometric Spatial Regularization by Bregman Divergences

This section is concerned with generalizing the approach from Chapter 3 to the geometric
setting of discrete probability distributions. The Fisher-Rao metric [BR82] is induced
by the Boltzmann-Shannon entropy which is a Legendre function. On the other hand,
this Legendre function also induces the KL-divergence, which locally approximates the
squared geodesic distance on the probability simplex equipped with the Fisher-Rao metric
[Kas89]. Therefore, we propose a non-convex variational approximation where pairwise
interactions of the regularization term are based on the KL-divergence. In this sense, spatial
regularization naturally respects the information geometric properties of the assignment
manifold W. Moreover, the derived algorithm to solve the variational formulation itself
relies on the KL-divergence. For this we use optimization methods which involve generalized
proximal mappings with respect to Bregman divergences to incorporate the constraint set
in a geometric way.

4.3.1. Variational Energy Formulation

In this section we introduce a non-convex variational energy with geometric regularization
to approximate the combinatorial multilabel problem with (possibly) indirect measure-
ments (4.2). In Chapter 3 we already derived a successful strategy for incorporating linear
affine constraints into a relaxation based on total variation regularization. Here, we adopt
the same strategy, however with a different regularization, which respects the underlying
smooth geometry of discrete probability distributions. Moreover, in contrast to (3.28), an
additional entropy term is already enforcing more discrete solutions during optimization
and consequently a basic rounding procedure is sufficient.

In the following we assume, that the reconstructed function u ∈ Fn is piecewise-constant
with pre-specified levels from a feature space F , denoted by

u ∈ Fn∗ , F∗ := {f∗1 , . . . , f∗c } ⊂ F . (4.4)

To encode this prior knowledge in terms of labels, we relax the hard assignments of a label
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from F∗ to each pixel i ∈ [n] to the convex set of row-stochastic matrices, given by

W =

{
W ∈ [0, 1]n×c :

c∑
j=1

Wi,j = 1, ∀ i ∈ [n]

}
, (4.5)

such that each row of Wi is a discrete distribution describing the assignment at pixel i. As
a generalization of (3.13), we propose the non-convex variational energy formulation

min
W∈W

E(W ), E(W ) = λRW(W )− α〈W, log(W )〉+D(W ), (4.6)

which consists of three basic building blocks detailed below:

(i) regularization for spatial coherence controlled by parameter λ ≥ 0,

(ii) an entropy term for enforcing a unique decision with weight α ≥ 0

(iii) a data term D for direct or indirect observations

Generally, convex relaxations [LBS09; LS11; CCP12] yield non-integral solutions after
optimization and hence a rounding scheme is required. In our case, however, the concave
entropy term promotes integral solutions during optimization.

Data Term. We consider two cases of the data term, the separable and non-separable.
Consequently, we implement the data term D(W ) in (4.6) with two different flavors:

• The separable case refers to the setting in which noisy image data u0 can be directly
observed. This is the standard scenario of the multilabel problem, which allows
to define a data term based on local decisions. Hence, a distance function dF(·, ·)
measures the similarity to the priors f∗j ∈ F∗ for j ∈ [c]. We define the data term

Dunary(W,DF ) = 〈W,DF 〉 with DF ;i,j = dF (u0
i , f
∗
j ) (4.7)

for separable labeling problems which measures the correlation between assignments
and the distance matrix.

• The non-separable case refers to problems where image data u0 cannot be directly
observed since it is the solution of the inverse problem (4.2). In (3.9) we have
introduced the assignment operator

u = PF∗(W ) = WF ∗ with F ∗ := (f∗1 , . . . , f
∗
c )>, (4.8)

which assigns to each pixel i a convex combination of labels in terms of the distribution
Wi. As a consequence, we instead minimize the distance d(APF∗(W ), b) in (4.2)
between the forward projection by A of the back-projected assignments and the given
measurements b. In Chapter 3.4 it was shown that, if the data term D(PF∗(W ))
only depends on the assigned solution PF∗(W ), will result in a weak relaxation.
Therefore, the introduction of a concave discretization term (3.14) is required. The
generalization of the discretization term to a general feature space F with a distance
function dF (·, ·) is straightforward. Accordingly, we define the data term

Dinverse(W,A, b) = d(APF∗(W ), b) +
n∑
i=1

c∑
j=1

Wi,jdF
(
(PF∗(W ))i, f

∗
j

)
, (4.9)

for non-separable labeling problems with indirect measurements.

47



4. Geometric Multilabel Tomography

Note, when the discretization term in (4.9) is constrained to the simplex (n = 1), the
vertices of the simplex are its minima. In this case, the entropy term in (4.6) has the
same minimizers as the discretization term, which enforces integral solutions. However, the
discretization term in (4.9) constitutes a meaningful descent direction w.r.t. to the labels
(pushing the assignment PF∗(W ) towards the label values f∗j ). Furthermore, linearization

of the discretization term using the squared Euclidean distance at a point W 0 resembles
Dunary with u0 = PL(W 0), see Chapter 3.4 for details.

Geometric Regularizer. To enforce spatial coherence over pixelwise probability dis-
tributions Zach et. al. [ZGFN08] regularize each individual layer W j by total variation
in order to get a convex relaxation of the Potts model. In Chapter 3.4, we employed
this approach to derive the non-convex variational approximation (3.13). A tighter re-
laxation is obtained by coupling the regularization across layers as in [CCP12; LBS09].
However, these works employ Euclidean norms that disregard the underlying geometry
of the discrete probability distributions and hence necessitate re-projection onto the simplex.

Instead, we propose a regularizer RW(W ) (see (4.6)) which respects the underlying
geometry of the probability simplex by coupling probability distributions across layers via
the KL-divergence. Our regularizer is defined as

RW(W ) :=

n∑
i=1

∑
k∈Ni

1

|Ni|
KL(Wi,Wk), (4.10)

which enforces spatial coherence by pairwise interactions in neighborhoods Ni induced by
the underlying grid-graph of the image.

Remark 4.3.1. It is well-known that the KL-divergence locally approximates the squared
geodesic distance on the probability simplex equipped with the Fisher-Rao metric [Kas89].
In this sense, (4.10) naturally respects the information geometric properties of the underlying
manifold. Furthermore, for this particular manifold, our formulation without approximation
of the quadratic geodesic distance would correspond to a non-local extension of a quadratic
regularizer in the framework of [WDS14]. Finally, Proposition 4.3.1 states two basic
properties of the geometric regularizer.

Proposition 4.3.1 (Basic Properties). Let W ∈ W and RW(W ) be defined by (4.10).
Then

(i) RW(W ) is a convex function

(ii) RW(W ) is the KL-divergence between Wi and the geometric mean of the vectors Wk

indexed by k ∈ N (i),

RW(W ) =
n∑
i=1

KL
(
Wi, gm({Wk}k∈Ni)

)
, gm({Wk}k∈Ni) :=

∏
k∈Ni

W
1
|Ni|
k . (4.11)

Proof. Assertion 1. follows from the joint convexity of the KL-divergence [CT06]. The
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second claim is implied by

RW(W ) =

n∑
i=1

∑
k∈Ni

1

|Ni|
〈Wi, log

(Wi

Wk

)
〉 =

n∑
i=1

〈Wi, log

( ∏
k∈Ni

(Wi

Wk

) 1
|Ni|
)
〉 (4.12a)

=

n∑
i=1

〈Wi, log
(
W
|Ni| 1

|Ni|
i

∏
k∈Ni

(
W

1
|Ni|
k

)−1
)
〉 =

n∑
i=1

KL
(
Wi,

∏
k∈Ni

W
1
|Ni|
k

)
. (4.12b)

In the following section we reformulate the objective function defined in (4.6) as a
difference of convex (DC) program and work out a corresponding optimization algorithm
which naturally respects the underlying geometry of probability distributions.

4.3.2. Bregman Proximal Optimization

In this section our aim is to derive a numerical algorithm which efficiently finds a minimizer
of the variational formulation (4.6). The proposed energy admits the decomposition into a
convex part and a concave part which corresponds to the discretization term together with
the entropy. This suggests to use the generic difference of convex functions (DC) frame-
work [PE86]. Moreover, we are interested in solving the subproblems efficiently by using
the problem specific structure. In particular, the relaxed solution has to be constrained
to the convex set W of pixelwise simplex constraints. In contrast to the preliminary
version of this approach, introduced in Chapter 3, we incorporate these constraints in a
geometric way with help of a suitable Bregman divergence. Based on these divergences,
generalized proximal mappings can realize a non-linear and implicit gradient descent,
without the requirement to project onto the feasible set at every iteration. This allows to
use a generalized version of the Chambolle Pock primal-dual (PD) algorithm [CP16], to
solve the sub-problems efficiently even in large-scale scenarios.

DC Programming. A large subclass of non-convex objective functions are DC functions
which can (locally) be minimized by DC programming [PE86]. The basic form of a DC
program is given by

W ∗ = arg min
W

g(W )− h(W ), (4.13)

where g(W ) and h(W ) are proper, lower semicontinuous, convex functions. The DC
algorithm [PH97] for minimizing (4.13) guarantees convergence to a critical point. This
amounts to starting at W (0) ∈ dom(W) and alternatingly applying the updates

V (k) ∈ ∂h(W (k)) and W (k+1) ∈ ∂g∗(V (k)) (4.14)

until a termination criterion is reached. Here, g∗ denotes the Fenchel conjugate (Section
2.1.2) of g.

To apply the DC algorithm to our non-convex energy E(W ) defined in (4.6) we rewrite
E(W ) = g(W ) − h(W ) as a DC function. We identify the concave part of the DC
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Algorithm 4.1: Iterated Primal-Dual Algorithm

Init: choose W (0) = 1W (barycenter), Q(0) ∈ dom(D∗) = Rm and τ, σ > 0
while not converged do

set Ŵ = W (k)

while not converged do

W (l+1) = arg min
W∈W

λRW(W ) + 〈W,P>F∗(A
>Q(l))−∇h(Ŵ )〉+ 1

τ KL(W,W (l))

(4.19a)

Q(l+1) = arg min
Q

D∗(Q)− 〈Q,APF∗(2W
(l+1) −W (l))〉+ 1

2σ‖Q−Q
(l)‖22

(4.19b)

l← l + 1

k ← k + 1; W (k) = W (l+1)

Output: W ∗ = W (k)

decomposition and set

hunary(W ) := α〈W, log(W )〉 (4.15a)

hinverse(W ) := α〈W, log(W )〉 −
n∑
i=1

c∑
j=1

Wi,jdF
(
(PF∗(W ))i, f

∗
j

)
, (4.15b)

for the separable and non-separable case respectively. This is a natural decomposition of
the energy (4.6) since both entropy and the discretization term are concave. Furthermore,
we collect the remaining convex terms of the energy in (4.6) as

g(W ) := λRW(W ) +D(W ), (4.16)

where D(W ) corresponds to the convex part of the data term from (4.9). In our case since
the concave part h is differentiable, the DC algorithm results in the fixed point iteration

W (k+1) = arg min
W∈W

λRW(W ) +D(W )− 〈W,∇h(W (k))〉, (4.17)

where the Euclidean gradient ∇h(W ) for both cases is given by

∇hunary(W ) = α(log(W ) + 1n×c) (4.18a)

∇hinverse(W ) = α(log(W ) + 1n×c)−
(

PF∗(W )1>c − 1nF
>)2. (4.18b)

Regarding the second term of the non-separable case, we refer to Proposition 3.5.1 for the
gradient with F∗ ⊂ R. The vectorial case F∗ ⊂ Rd together with dF(x, y) = ‖x − y‖22 is
straightforward by computing the Euclidean gradient for each channel.

Solving the Fixed Point Iteration. The generic DC algorithm reduces to the fixed
point iteration (4.17), which amounts in solving a sequence of convex optimization problems.
Each convex subproblem is constrained to the convex set W of assignments matrices. We
use Algorithm 4.1 to iteratively solve the subproblems using the generalized primal-dual
algorithm [CP16] with Bregman proximal mappings. In particular, we employ the KL-
divergence as a Bregman divergence which allows to incorporate the convex constraints in
a smooth and geometric way without the requirement of a projection onto the set W. See
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Remark 4.3.1.

The primal update step (4.19a) of Algorithm 4.1 requires evaluating the generalized
proximal operator of the regularizer (4.10). Therefore, we rewrite the primal step (4.19a)
as

W (l+1) = arg min
W∈W

RW(W ) +
1

λτ
KL(W,P ), (4.20)

where the argument P ∈ W is given by the non-linear gradient descent step

P = arg min
W∈W

〈W,P>F∗(A
>Q(l))−∇h(Ŵ )〉+

1

τ
KL(W,W (l)) (4.21a)

= arg min
W∈W

1

τ
KL
(
W,W (l) exp

(
− τ(P>F∗(A

>Q(l))−∇h(Ŵ ))
))

(4.21b)

=
W (l) exp

(
− τ(P>F∗(A

>Q(l))−∇h(Ŵ ))
)

〈W (l), exp
(
− τ(P>F∗(A

>Q(l))−∇h(Ŵ ))
)
〉
. (4.21c)

Note that the argmin induces normalization of P , thus P ∈ W.

Next, Proposition 4.3.2 below states that evaluating the generalized proximal mapping
(4.20) can be done approximately by an efficient fixed point iteration rather then solving
a large system of non-linear equations (optimality conditions). Even for larger problem
instances, this fixed point iteration evaluates the proximal mapping very efficiently. Specif-
ically, in our numerical experiments we observed convergence within few iterations and we
initialized with W (0) = P for warm start. Due to the fact that the variation in (4.11) with
respect to geometric averaging is significantly smaller than in the first argument of the
KL-divergence (see [ÅPSS17]), we propose the following converging fixed point iteration
which is stated in Proposition 4.3.2.

Proposition 4.3.2 (Evaluation of the Proximal Mapping). Let P ∈ W be fixed and define
RW(W ) by (4.10), then the fixed point iteration

W
(m+1)
i = arg min

Wi∈∆c

KL(Wi, gm({W (m)
k }k∈Ni)) +

1

τλ
KL(Wi, Pi), ∀ i ∈ [n], (4.22)

converges for every W (0) ∈ W.

Proof. We evaluate the fixed point iteration (4.22) and obtain

W
(m+1)
i =

(Pi)
1

1+τλ gm({W (m)
k }k∈Ni)

τλ
1+τλ

〈(Pi)
1

1+τλ , gm({W (m)
k }k∈Ni)

τλ
1+τλ 〉

∀ i ∈ [n]. (4.23)

Without loss of generality we skip the intermediate normalizations and normalize only the
last iterate since the normalization of the intermediate steps cancels out. This yields the
fixed point iteration with P ∈ W fixed and initial point W (0) ∈ W

W
(m+1)
i = (Pi)

1
1+τλ gm({W (m)

k }k∈Ni)
τλ

1+τλ . (4.24)

Taking the logarithm of (4.24), substituting v(m) = log(W (m)) and r = log(P ), gives

v
(m+1)
i =

1

1 + τλ
ri +

τλ

1 + τλ

∑
k∈Ni

1

|Ni|
v

(m)
k . (4.25a)

Rewriting the neighborhood interactions by the associated stochastic matrix Ω, with
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Ωi,k := 1/|Ni| for k ∈ Ni and 0 otherwise, we get the explicit expression

v(m+1) =
1

1 + τλ
r +

τλ

1 + τλ
Ω︸ ︷︷ ︸

:=Ω̃

v(m) =
1

1 + τλ

m∑
l=0

Ω̃lr + Ω̃m+1v(0). (4.26)

Since Ω per definition, is a stochastic matrix and τλ(1 + τλ)−1 < 1 it follows that

lim
m→∞

Ω̃m = 0. (4.27)

Thus |λi| < 1 holds for all eigenvalues of Ω̃ and (In − Ω̃) is invertible. This implies that
the geometric series of the matrix Ω̃ converges to

v∗ = lim
m→∞

v(m) =
1

1 + τλ
(In − Ω̃)−1r. (4.28a)

Resubstituting the continuous functions W = exp(v∗), r = log(P ) into (4.28a) and
normalization finally gives

W ∗i =
exp

(
1

1+τλ(In − Ω̃)−1 log(P )
)
i

〈exp
(

1
1+τλ(In − Ω̃)−1 log(P )

)
i
, 1c〉

, (4.29a)

which yields the limit point W ∗ independent of W (0).

Due to the convexity of D and the standard Euclidean proximal mapping, the dual
update step 4.19b of Algorithm 4.1 can be evaluated in a straightforward manner. We refer
to [CP11; CP16] for details.

Parameter Selection. Following the parameter selection of [CP16, Example 7.2] we
set τ =

√
c/L2

12 in the primal update and σ = 1/
√
c in the dual update. Note that this

parameter configuration implies that the condition στ ≤ ‖APF∗(·)‖2 holds, where the
operator norm is given by

L12 = ‖APF∗(·)‖ = sup
‖x‖1≤1

‖A(In ⊗ F ∗>)x‖2 = max
j∈[m]

‖(A(In ⊗ F ∗>))j‖2, (4.30)

with respect to the mixed `1-`2-norm. This stems from the fact that, in the primal, the
negative entropy is 1-strongly convex with respect to the `1-norm when restricted to the
simplex, which induces the KL-divergence.

4.3.3. Experiments

In this section we evaluate our proposed variational model (4.6) for separable and non-
separable data terms. Regarding indirect observations, we compare the proposed method to
state-of-the-art approaches in the setting of discrete tomography reconstruction from only
a few projection angles. In all experiments we used a |N | = 3× 3 neighborhood system to
specify the pairwise relations in the proposed geometric regularization. We avoid numerical
issues when evaluating the KL-divergences for almost discrete assignments by adopting the
renormalization strategy from [ÅPSS17]. In the end, to guarantee fully discrete solutions
we use only a simple pixelwise maximum likelihood (argmax) rounding scheme. Finally,
we denote our proposed joint reconstruction and labeling approach (LayerKL), since the
regularization is based on the KL-divergence which couples the layers (labels) of the
assignments in a geometric way.
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α = 0λ α = 0.1λ α = 0.2λ α = 0.4λ α = 0.6λ α = 0.8λ α = 1λ

λ = 1

λ = 5

λ = 10

Figure 4.1.: Random color noise (top left corner) serves as direct input data and is labeled
with F∗ = { , , } with varying regularization parameter λ and discretization parameter α.

Parameter Influence. This experiment shows the influence of the regularization
parameter λ and the discretization parameter α. We generated random color noise u0 and
implemented the data term in (4.7) by Dunary(W,DF ) with the distances

DF ;i,j = dF (u0
i , f
∗
j ) = ‖u0

i − f∗j ‖22, where f∗j ∈ F∗ = { , , }, (4.31)

between the direct input image and the labels. Figure 4.1 shows that larger values of λ
act as a smoothing parameter enforcing larger homogeneous regions, whereas α favors
consistency over the discrete label space, which leads to faster discretization and stops
the diffusion process. The absence of the entropy term promoting integral solutions is
illustrated in the left most-column (α = 0). Note, that in this experiment no rounding was
applied to show the effect of rounding during optimization.

50 100 200 300 400 500 520 550

Figure 4.2.: Evolution of interfaces for increasing iteration number with the label set f∗j ∈
F∗ = { , , }. The interfaces are propagated by the geometric regularization uniformly from
the three seed pixels into the uninformative image until they meet in a triple junction.

Interface Propagation. In this example we illustrate the information propagation
(diffusion) by the geometric regularization in the case when the data term is uninformative.
We use the same model configuration and F∗ as in the previous experiment with λ = 10
and α = 1. We set the input data u0 to a constant gray image with three seed pixels:
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• one -pixel in the top left corner,

• one -pixel in the bottom left corner and

• one -pixel in the middle of the right edge.

Figure 4.2 displays the evolution of interfaces for increasing iterations. We see that the
information given by the three seed pixels is uniformly propagated into the image until the
interfaces meet in a triple junction which demonstrates uniform propagation speeds. Note
that in this experiment, no rounding was applied.

original blurred (+noise) λ = 1.0, α = 0.01 λ = 0.1, α = 0.01

Figure 4.3.: Reconstruction and labeling with the proposed model (4.6) of a severely blurred
and noisy image of an insect with discrete label set F∗ = { , , , , , }. In both cases the
approach is able to reconstruct fine details which are present in the original image.

Joint Deblurring and Labeling. We used the non-separable data term Dinverse de-
fined in (4.9) and implemented by the `1-norm as distance for the indirect measurements.
The discretization term was extended component-wise to each color channel corresponding
to the quadratic Euclidean norm. The label set F∗ = { , , , , , } was generated by
K-means clustering with 6 clusters of the original image, which is displayed in Figure 4.3.
The same figure shows the reconstruction of a severely blurred picture of an insect (motion
blur of 65 pixel length) and joint labeling with two different parameter configurations:
high regularization and low regularization. In a more challenging setting we additionally
corrupted 50% the blurred image with random colors drawn from a uniform distribution.
In both cases we were able to reconstruct fine details of the original image.

Discrete Tomography Reconstruction. The reconstruction problem in discrete
tomography aims to recover an image u ∈ Rn from a small number of possibly noisy
measurements b = Au + ν ∈ Rm. The latter correspond to line integrals that sum up
all absorptions over each ray transmitted through the object. A given projection matrix
A ∈ Rm×n encodes the imaging geometry. Here we used the parallel beam setup. The
width of the sensor-array was set to 1.5 times the image size, so that every pixel intersects
with at least a single projection ray. We used the non-separable data term Dinverse (4.9)
implemented by indicator functions to enforce the constraints, see Chapter 3.4 for details.
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We compare the proposed model (LayerKL) to state-of-the-art approaches for non-binary
discrete tomography reconstruction from only a few projection angles. Specifically, we
considered DART [BS11], the energy minimization method of Varga et. al. [VBN12]
(Varga) and the preliminary version (LayerTV) introduced in Chapter 3, with a layer-wise
total variation regularizer.

LayerKL
noiseless

LayerKL
noise case

LayerTV
noiseless

LayerTV
noise case

DART
noiseless

DART
noise case

Varga
noiseless

Varga
noise case

3

4

5

Figure 4.4.: Visual results of experiment with phantom 1 (ellipses, n = 64× 64).

LayerKL
noiseless

LayerKL
noise case

LayerTV
noiseless

LayerTV
noise case

DART
noiseless

DART
noise case

Varga
noiseless

Varga
noise case

6

7

8

Figure 4.5.: Visual results of experiment with phantom 4 (Shepp-Logan [SL74], n = 64× 64).

Setup. For the evaluation we measured the relative pixel error, that is the relative
number of erroneously reconstructed pixels as compared to the ground truth. We tried
to use the default parameters of the competing approaches as proposed by their authors.
However, since the test-datasets differ in size, we slightly adjusted the parameters to get
best results for every algorithm and problem instance.

Results. In Figure 4.5 and 4.4 the proposed approach gives perfect reconstructions
with a low number of projection angles in the noiseless case and also returns high-quality
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Ground
Truth

LayerKL

LayerTV

Figure 4.6.: Reconstruction of the Shepp-Logan (n = 64 × 64) phantom [SL74] from only
7 projections, where the indicator variables W j are shown for each layer j ∈ [c] from left to
right. White denotes the selected label. The LayerTV produces a non-integral solution with a
convex combination of the labels - illustrating the need for rounding, whereas our proposed
model LayerKL directly gives a meaningful and almost discrete labeling.

reconstructions in the presence of noise. The preliminary approach LayerTV needs one
fewer projection, but a non-trivial rounding strategy must be used. This behavior is
depicted in Figure 4.6 for the Shepp-Logan phantom [SL74] from 7 projections where
LayerTV clearly gives a non-integral solution and requires a special rounding strategy to
obtain a meaningful reconstruction. Further details are given in the caption. Figure 4.7
shows the numerical evaluation of the approaches for increasing (but small) numbers of
projection angles, in the noiseless case (filled markers) and in the noisy case (non-filled
markers), with Poisson noise SNR = 20 dB.
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Figure 4.7.: Relative pixel error relative to the number of projections angles. Regarding the
Shepp-Logan phantom [SL74] LayerTV can reconstruct the phantom with one fewer projection,
but a special rounding strategy is performed to obtain a meaningful solution.
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4.4. Submanifold Reconstruction Flow

4.4. Reconstruction by Gradient Flows on a Riemannian
Submanifold

This section is concerned with a completely geometric approach for approximating the
combinatorial multilabel problem with indirect measurements. Previously, we have derived
a variational approach (4.6), where regularization and optimization are based on the
KL-divergence in order to respect the geometric properties of the assignment manifold W.
Here we are going one step further by additionally incorporating the affine constraints
from the indirect measurements directly into the geometry. Therefore, we are restricting
the assignment manifold to a submanifold which is equipped with a natural extension
of the Fisher-Rao metric [BR82]. More precisely, we endow the relative interior of the
feasible set with a Hessian Riemannian metric. Then we construct a smooth gradient
flow, for any smooth objective function, restricted to the submanifold. Accordingly, we
define a corresponding objective function for joint tomographic reconstruction and label
assignment. Finally, we show that the resulting flow can be numerically integrated by an
iterated implicit scheme based on a Bregman proximal point iteration.

4.4.1. Tomographic Assignment Flow

In the case of direct observations, the assignment flow (2.89) is a smooth geometric approach
for labeling where each label j ∈ [c] and corresponding prototype

f∗j ∈ F∗ := {f∗1 , . . . , f∗c } ⊂ R, (4.32)

is represented by a vertex ej ∈ Rc of the probability simplex. Here we restrict to real-valued
labels for the purpose of discrete tomographic reconstruction. The relative interior of
the set of feasible label assignments to all pixels corresponds to the set of row-stochastic
matrices with full support, denoted by W ⊂ Rn×c++ . Afterwards the feasible set W is turned
into a Riemannian manifold using the Fisher-Rao (information) metric [BR82].

We now consider the situation where the image data are only indirectly observed through
the projection constraints (3.4). To this end, we extend the assignment flow approach
using techniques developed by [ABB04], in order to restrict the smooth Riemannian flow
to assignments that respect the projection constraints.

Our starting point is the observation that the Riemannian metric used in the assignment
flow approach (2.89) is induced by the Hessian of a convex Legendre function, the negative
Bolzmann-Shanon entropy which reads

h(W ) := 〈W, log(W )− 1n×c〉, (4.33)

with domain restricted to the relative interior of

W = {W ∈ Rn×c+ : W1c = 1n}. (4.34)

In order to take into account the projection constraints (3.4), we introduce the assignment
operator

PF∗ :W → conv(Fn∗ ), W 7→ PF∗(W ) = (In ⊗ F ∗>) vec(W ) = WF ∗, (4.35)

where F ∗ := (f∗1 , . . . , f
∗
c )> is the vector of all admissible gray-values, that explicitly

characterizes the reconstructed function

u = PF∗(W ) = WF ∗ ∈ Rn (4.36)

in terms of given labels F ∗ and assignments W . Based on this correspondence and (3.4),
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4. Geometric Multilabel Tomography

we restrict the feasible set W to

Wtomo =
{
W ∈ Rn×c+ : B vec(W ) = y

}
, B :=

(
A(In ⊗ F ∗>)
In ⊗ 1>c

)
y :=

(
b

1n

)
. (4.37)

The following Proposition 4.4.1 states a non-degeneracy property of the matrix B which is
crucial for the smooth geometric construction below. The proof exploits the structure of B
and the properties of the Kronecker product.

Proposition 4.4.1 (Rank of B). The matrix B has full row rank by construction, if the
measurement matrix A has full row rank.

Proof. We rewrite the matrix B ∈ R(m+n)×cn as

B =

(
A(In ⊗ F ∗>)
In ⊗ 1>c

)
=

(
A 0
0 In

)
︸ ︷︷ ︸

:=X

(
In ⊗ F ∗>
In ⊗ 1>c

)
︸ ︷︷ ︸

:=Y

. (4.38)

The matrix X ∈ R(m+n)×2n has full row rank since the matrix A has full row rank by
assumption.

Furthermore, the matrix Y ∈ R2n×cn has full row rank, i.e. rank(Y ) = 2n since

rank(In ⊗ F ∗>) = rank(In) rank(F ∗>) = n, (4.39a)

rank(In ⊗ 1>c ) = rank(In) rank(1>c ) = n, (4.39b)

and moreover the two blocks are linearly independent by construction (it is not possible to
express a row of the first block of Y with a linear combination of rows from the second
block and vice versa, except for F ∗ = λ1 with λ 6= 0).

Thus, we have

rank(B) = rank(XY ) = rank(X) = m+ n, (4.40)

which shows that B has full row rank.

Our next step is to restrict the manifoldW to a manifoldWtomo, based on the restriction
of W to Wtomo. We adopt the convex Legendre function h(W ), defined in (4.33), and take
as its domain the strictly positive orthant M = Rn×c++ . Then the Hessian ∇2h(W ) = 1

W
(componentwise inverse) smoothly depends on W ∈M and defines the linear mapping

H(W ) : Rn×c → Rn×c, U 7→ H(W )U :=
(
Ui,j/Wi,j

)
i∈[n],j∈[c]

, (4.41)

which is positive definite. Based on the canonical identification of tangent spaces TWM'
Rn×c for open subsets of the Euclidean space, the mapping H(W ) defines the Riemannian
metric

〈U, V 〉HW := 〈H(W )U, V 〉, ∀W ∈M, U, V ∈ Rn×c. (4.42)

Given some smooth objective

J : Rn×c → R, W 7→ J(W ), (4.43)

the corresponding Riemannian gradient field restricted to M is given by

grad J|M(W ) := H(W )−1∇J(W ). (4.44)

Next we consider the smooth submanifold of M, given by

Wtomo = rint(Wtomo) =M∩ {W ∈ Rn×c : B vec(W ) = y} ⊂ M (4.45)

with tangent space TW Wtomo ' N (B). The metric on M induces a metric on Wtomo.
Furthermore, the Riemannian gradient field of J(W ) restricted to Wtomo reads

grad J|Wtomo
(W ) = Π

N (B)
W

(
H(W )−1∇J(W )

)
, (4.46)
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4.4. Submanifold Reconstruction Flow

where Π
N (B)
W is the 〈·, ·〉HW -orthogonal projection onto the nullspace N (B). Since the matrix

B has full rank due to Proposition 4.4.1, this projection reads

Π
N (B)
W (H(W )−1∇J(W )) = vec−1

[(
I − (BDH

WB
>)−1BDH

W

)
(DH

W )−1 vec[∇J(W )]
]
,

(4.47a)

with DH
W = Diag[vec(H(W ))]. (4.47b)

The vector field − grad J|Wtomo
(W ) for W ∈ Wtomo is the steepest descent direction in the

corresponding tangent space N (B). Furthermore, minimization of an objective J on the
Riemannian manifold

(
Wtomo, 〈·, ·〉HW

)
amounts to finding the solution trajectory W (t) of

the continuous dynamical system

Ẇ (t) + grad J|Wtomo
(W (t)) = 0, W (0) = W (0) ∈ Wtomo, (4.48)

with an initial condition W (0) ∈ Wtomo.

4.4.2. Objective Function

After having defined the geometric setting in the previous section, we are able to specify a
suitable objective function for joint reconstruction and labeling.

We adopt and modify the assignment flow approach (2.89) for our purpose. Assume
we have some tomographic reconstruction which is given in terms of the assignments Ŵ .
Accordingly, we define a distance matrix

D(Ŵ ) :=
1

ρ

(
‖PF∗(Ŵ )i − f∗j ‖22

)
i∈[n], j∈[c]

(4.49)

with the assignment operator PF∗(Ŵ ) given by (4.35) and a scaling parameter ρ > 0.
Furthermore, we compute a similarity matrix S(Ŵ ) as described in (2.88) to induce
geometric spatial regularization.

Based on S(Ŵ ), we define the following objective function

J(W, Ŵ ) = KL
(
W,S(Ŵ )1+α

)
, α > 0. (4.50)

Remark 4.4.1. Minimizing J with respect to W encodes two aspects. First, the discrete
assignment distributions comprising W should be consistent with the spatially regularized
similarities S(Ŵ ) that correspond to the lifted distances D(Ŵ ) between the reconstructed
function PF∗(Ŵ ) and the labels F∗. Second, since W appears as first argument of the
KL-distance, W matches the prominent modes of the discrete distributions comprising
S(Ŵ ) (cf. [Min05]), and hence enforces unique labelings. The damping parameter α enables
to control this “rounding property”.

Since the assignment Ŵ is not given beforehand, we pursue an iterative strategy and
set Ŵ = W (k) to the current iterate, in order to compute W (k+1) by minimizing (4.50).
In the next section, we formulate this process in a more principled way as a fixed point
iteration, that properly discretizes and solves the continuous flow (4.48).

4.4.3. Iterated Implicit Scheme

In this section we want to find a solution trajectory of the initial value problem (4.48)
associated with the steepest Riemannian gradient descent of the convex objective function
J(W ) in (4.50) on the smooth manifold Wtomo. Following [ABB04], we reformulate (4.48)
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4. Geometric Multilabel Tomography

as a differential inclusion for a time interval (Tm, TM ) corresponding to the unique maximal
solution of (4.48) and obtain

d

dt
∇h(W (t)) +∇J(W (t)) ∈ N (B)⊥, W (t) ∈ Wtomo, W (0) = W (0) ∈ Wtomo, (4.51)

with h given by (4.33). Since J(W ) is convex, the time discretization

d

dt
∇h(W (t)) ≈ ∇h(W (k+1))−∇h(W (k))

µk
, (4.52)

together with W (0) ∈ Wtomo yields the implicit scheme

∇h(W (k+1))−∇h(W (k)) + µk∇J(W (k+1)) ∈ N (B)⊥, B vec(W (k+1)) = y, (4.53)

where µk is a step-size parameter. These relations are in fact the optimality conditions of
the Bregman proximal point method with the KL-divergence as a proximity measure

W (k+1) ∈ arg min
W∈Rn×c+

J(W, Ŵ ) +
1

µk
KL(W,W (k)) s.t. B vec(W ) = y. (4.54)

We solve (4.54) for fixed W (k) by an iterative algorithm to perform an implicit integration
step on the flow (4.48). In order to update the fixed Ŵ in J(W, Ŵ ) defined by (4.50), we set
Ŵ = W (k). Inserting Ŵ into (4.54) and combining the KL-divergences as a multiplicative
convex combination with respect to the second argument yields the fixed point iteration

W (k+1) ∈ arg min
W∈W

KL
(
W,
(
W (k)

) 1
1+µk

(
S(W (k))

)µk(1+α)
1+µk︸ ︷︷ ︸

:=Tµk (W (k))

)
s.t. APF∗(W ) = b, (4.55)

where the constraints W ∈ Rn×c+ and B vec(W ) = y are rewritten as W ∈ W and
APF∗(W ) = b. Regarding convergence of the fixed point iteration (4.55), we use a
non-summable diminishing step-size parameter

µk :=
1

0.005 · k · ‖APF∗(W
(k))− b‖2

with lim
k→∞

µk = 0. (4.56)

Consequently, the operator Tµk becomes Tµk −→ Id for k →∞ and the influence of the
objective function J(W ) vanishes. When the iteration converges, Eq. (4.55) reduces to the
KL-projection onto the fixed feasible set Wtomo.

Solving the Fixed Point Iteration. Algorithm 4.2 solves equation (4.55) iteratively
using the generalized primal-dual algorithm [CP16]. The primal update step (4.57a) can
be evaluated in closed form

W (l+1) = arg min
W∈W

KL(W, W̃ ) + 〈W,P>F∗(A
>Q(l))〉+

1

τ
KL(W,W (l)) (4.58a)

=
(W (l))

1
1+τ (W̃ )

τ
1+τ exp(− τ

1+τ P>F∗(A
>Q(l)))

〈(W (l))
1

1+τ (W̃ )
τ

1+τ , exp(− τ
1+τ P>F∗(A

>Q(l)))〉
. (4.58b)

The dual update step (4.57b) admits a closed form

Q(l+1) = arg min
Q
〈Q, b−APF∗(2W

(l+1) −W (l))〉+
1

2σ
‖Q−Q(l)‖22 (4.59a)

= Q(l) + σ(APF∗(2W
(l+1) −W (l))− b), (4.59b)

by evaluating the standard proximal operator since the measurements b are in the Euclidean
space Rm.
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4.4. Submanifold Reconstruction Flow

Algorithm 4.2: Iterated Implicit Primal-Dual Scheme

Init: choose W (0) = 1W (barycenter), dual variable Q(0) ∈ Rm and τ, σ > 0
Parameters: selectivity ρ > 0, discretization α > 0, trust region µk > 0

while not converged do

set W̃ = Tµk(W k)
while not converged do

W (l+1) = arg min
W∈W

KL(W, W̃ ) + 〈W,P>F∗(A
>Q(l))〉+ 1

τ KL(W,W (l))

(4.57a)

Q(l+1) = arg min
Q
〈Q, b−APF∗(2W

(l+1) −W (l))〉+ 1
2σ‖Q−Q

(l)‖22

(4.57b)

l← l + 1

k ← k + 1; W (k) ←W (l+1)

Output: W ∗ = W (k)

Parameter Selection. For the step-size parameters τ and σ of the iterated primal-dual
algorithm, we adopt the parameter values of [CP16, Example 7.2] and set τ =

√
c/L2

12

for the primal update and σ = 1/
√
c for the dual update. This choice implies that the

condition στ‖APF∗(·)‖2 ≤ 1 for convergence holds, with the operator norm

L12 = ‖APF∗(·)‖ = sup
‖x‖1≤1

‖A(In ⊗ F ∗>)x‖2 = max
j∈[m]

‖(A(In ⊗ F ∗>))j‖2, (4.60)

with respect to the mixed `1 − `2-norm. This reflects the fact that the negative entropy is
1-strongly convex with respect to the `1-norm when restricted to the probability simplex.

4.4.4. Experiments

In this section we evaluate the proposed smooth geometric flow (4.48) for joint tomographic
reconstruction and labeling, implemented by the concrete objective function (4.50) which
is motivated by the assignment flow approach (2.89). We compared the proposed approach
(TomoFlow) to state-of-the-art approaches for discrete tomography, including the Discrete
Algebraic Reconstruction Technique (DART ) [BS11], the energy minimization method of
Varga et al. [VBN12] (Varga), and our variational approximation (LayerTV), which was
introduced in Chapter 3, with a layer-wise total variation regularizer.

Setup. We adapted the binary phantoms from Weber et al. [WNS+06] to the multilabel
case, shown as phantom 1,2 and 3 in Figure 4.8. Phantom 4 is the well-known Shepp-
Logan phantom [SL74]. Furthermore, we simulated noisy scenarios by applying
Poisson noise to the measurements b with a signal-to-noise ratio of SNR = 20 db.
The geometrical projection setup was created by the ASTRA-toolbox [APB+15],
where we used parallel projections along equidistant angles between 0 and 180 degrees.
The width of the sensor-array was set 1.5 times the image size, such that every pixel
is intersecting with at least one single projection ray.
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4. Geometric Multilabel Tomography

(a) Phantom 1 (n = 64× 64 pixel, c = 4 labels)
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(b) Phantom 2 (n = 256× 256 pixel, c = 5 labels)
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(c) Phantom 3 (n = 256× 256 pixel, c = 8 labels)
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(d) Phantom 4 (n = 256× 256 pixel, c = 6 labels)
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TomoFlow with noise | LayerTV with noise

DART with noise | Varga with noise

Figure 4.8.: Evaluation of the approaches for different test-datasets and increasing (but
small) numbers of projections angles, in the noiseless case (filled markers) and in the noisy
case (non-filled markers), noise level SNR = 20 dB. The relative pixel error and runtime
is displayed. The proposed approach TomoFlow gives perfect reconstructions with a small
number of projection angles in the noiseless case and also returns good reconstructions in
the presence of noise, compared to the other approaches. The single competitive approach,
LayerTV, uses a special rounding strategy to obtain meaningful solutions (phantom 3 and 4)
and a dedicated data term to cope with Poisson noise.
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2 3 4 5 6 7 8 9 10

Figure 4.9.: “Implicit data terms” generated by the tomographic constraints, in terms of
the reprojected dual variable A>Q in algorithm 4.2 (scaled to [0, 1] and inverted for better
visualization), after convergence, for phantom 2 and an increasing number of projection angles.
The proposed approach achieves a perfect reconstruction from only 4 projection angles. The
missing information is effectively compensated by geometric label assignment and spatial
coherence due to geometric averaging.

Implementation details. The subproblems of Algorithm 4.2 were approximately solved by
the generalized primal-dual algorithm [CP16]. For the multiplicative updates (4.58b),
we adopted the renormalization strategy from [ÅPSS17] to avoid numerical issues
close to the boundary of the manifold, that correspond to unique label assignments.
The outer iteration was terminated when the reprojection error

‖APF∗(W
(k))− b‖2 < 0.1, (4.61)

dropped below the threshold 0.1. Additionally, we limited the number of total
iterations to 20.000. For the geometric averaging (cf. (2.88) and (4.50)), we used a
N = 3× 3 neighborhood for the smaller phantom 1 and N = 5× 5 for all others. In
order to reconstruct from noisy measurements, we modified the proposed approach by
using the squared `2-reprojection error as a relaxed data term, so that the objective
(4.50) reads

J(W, Ŵ ) = KL
(
W,S(Ŵ )1+α

)
+

1

2
‖APF∗(W )− b‖22, α > 0, (4.62)

which is smooth and convex in W . In this case, the fixed point iteration (4.55) is
applied to the modified objective (4.62) and the dual update step (4.57b) of algorithm
4.2 results in an additional rescaling, i.e.

Q(l+1) =
Q(l) + σ(APF∗(2W

(l+1) −W (l))− b)
1 + σ

(4.63)

compared to (4.59b). However, we remark, that the `2 data term has very limited
ability to treat Poisson noise, whereas the inequality projection constraints used by
LayerTV are superior.

Regarding DART we used the publicly available implementation included in the
ASTRA-toolbox [APB+15], for Varga [VBN12] and LayerTV (Chapter 3) we used our
own implementations in MATLAB. We used the default parameters of the competing
approaches as proposed by the respective authors. However, since the test-datasets
differ in size, we slightly adjusted the parameters in order to get best results for every
algorithm and problem instance.

Results. Figure 4.8 summarizes the numerical evaluation of the approaches for increasing
(but small) numbers of projections, in the noiseless case (filled markers) and in the
noisy case (non-filled markers), with Poisson noise SNR = 20 dB. Each test-dataset
is depicted in the leftmost column, followed by the relative pixel error and runtime.
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Figure 4.10.: Visual results of experiment phantom 2.
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Figure 4.11.: Visual results of experiment phantom 3.
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4.5. Conclusion

The proposed approach TomoFlow achieved perfect reconstructions with a small
number of projection angles in the noiseless case. Only LayerTV needed one fewer
projection at phantom 3 and 4. LayerTV however tends to return non-integral
solutions when the regularization parameter is large and requires afterwards a special
rounding strategy to obtain a meaningful reconstruction. In noisy scenarios, LayerTV
performs better due to use of the inequality projection constraints, followed by the
proposed method TomoFlow that outperforms both DART and Varga. Figure 4.9
shows the poor “implicit data terms” generated by the tomographic constraints in
the case of phantom 2, to illustrate the severe ill-posedness of these inverse problems
(see caption for more details).

Considering the runtime (right plots from figure 4.8), DART is the fastest approach
followed by Varga. The proposed approach TomoFlow and LayerTV are clearly
consuming more runtime to return more accurate solutions. In the noiseless case and
with a sufficient number of projection angles, TomoFlow is faster. We point out that
the proposed approach could easily be parallelized using graphics cards. In Figure
4.10 and 4.11 the visual results are displayed for the phantoms 2 and 3.

4.5. Conclusion

In this chapter we presented two novel approaches to jointly solving tomographic recon-
struction and label assignment with particular focus on the underlying geometric setting
of discrete probability distributions.

The first approach was a non-convex variational energy, where the spatial regularization
term is implemented by pairwise KL-divergences. This inter-layer coupling of the assign-
ments preserves the information geometric properties of the underlying statistical manifold.
Additionally, we showed that evaluating the proximal mapping of the regularization term,
relying on the KL-divergence, can be efficiently done by a converging fixed-point iteration.
A primal-dual algorithm was applied to solve each subproblem. The numerical evaluation
illustrated the competitiveness of the approach compared to state-of-the-art methods for
discrete tomography reconstruction as well as deblurring and denoising with joint labeling.

The second approach was a gradient flow which evolves on a Riemannian submanifold.
Therefore, we derived a suitable Riemannian structure on the feasible set in order to
optimize a smooth objective function on a manifold that respects the projection constraints.
The Riemannian gradient flow for our particular objective function combines tomographic
reconstruction and labeling in a smooth and mathematically sound way. We derived an
iterated implicit scheme to numerically integrate the resulting tomographic assignment
flow. Finally, a numerical evaluation illustrated the approach compared to state-of-the-art
discrete tomography reconstruction algorithms.

In the context of this work, an immediate question arises, whether the supervised joint
reconstruction and labeling approaches can be extended to the unsupervised case. For
direct observations, the generalization of the multilabel problem to unsupervised scenarios
is investigated in the last chapter of this work within the smooth and geometric framework
of the assignment flow. However, the unsupervised setting with indirect measurements,
where neither the prototypes are given beforehand nor the data to be labeled is directly
available, poses a challenging task to solve for future work.
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Possible future work could include a rigorous mathematical analysis of convergence of the
fixed-point iteration (4.55) and stability of the corresponding Riemannian gradient descent
flow (4.48) that entails iterative updates Ŵ = W (k) of the objective function J(W, Ŵ ).
Such issues are not covered by standard convex programming theory.

Furthermore, a promising extension of the tomographic flow concerns the ability to
handle inequality constraints, in order to further improve the performance in scenarios
with high noise levels.
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CHAPTER 5

Self-Assignment Flows for
Unsupervised Data Labeling on Graphs

5.1. Introduction and Overview

In the previous chapters we mainly considered a generalization of the data labeling prob-
lem, where the data to be labeled cannot be observed directly, however indirect linear
measurements are available instead. Therefore the task at hand was to infer an optimal
labeling which is a solution of a linear inverse problem. We proposed non-smooth and
non-convex variational energies as well as smooth geometric approaches respecting the
underlying manifold structure of probabilistic assignments. Hereby, the main focus was
discrete tomography reconstruction as a challenging application. Additionally, we assumed
a set of prototypes to be given beforehand, a strong prior knowledge, which comprises the
supervised scenario of image labeling.

In this chapter we are interested in the complementary task, where the input data
is given directly but prototypes are not available beforehand and for that have to be
inferred from the data, resulting in the unsupervised scenario of data labeling. In practice,
the availability of prototypes as class representatives is a strong requirement. In many
applications either prototypes are not available or it is not clear what prototypes represent
the classes properly. A basic remedy is to cluster the data in a preprocessing step. However,
such clustering does not properly take into account the framework in which the resulting
prototypes are subsequently used for classification. Therefore, we pursue the strategy of
simultaneously learning (latent) prototypes in the very same framework while they are
used for inference, i.e. assignment of labels.

We have already seen in the previous chapter, that assignment flows (2.89) provide a
powerful and flexible framework for supervised image labeling which is fully interpretable
from the mathematical viewpoint. Moreover, the compositional structure of the defining
vector fields allows modular design derived from the smooth geometric setting of information
geometry. This smoothness particularly enables the design of efficient algorithms using
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geometric integration. A natural question is therefore, how to generalize the framework of
the assignment flow to the unsupervised scenario?

We briefly review the coupled flow approach [ZZÅ+18; ZZPS20a] where we took a first
step towards extending the supervised assignment flow to the unsupervised setting. The
coupled flow combines two geometric flows, the assignment flow with a time varying distance
matrix as well as explicit evolution of prototypes to enable the adaption of prespecified
prototypes. However, numerical integration on the corresponding feature manifolds can be
computationally demanding. Additionally, balancing the relative evolution velocity between
the two individual processes defines a free user parameter, and criteria for determining
proper values of this balancing parameter for specific applications are not yet available.

In order to alleviate these shortcomings we introduce the concept of self-assignment by
removing the necessity of explicit prototypes and replacing them by a copy of the given
data. Hence we abstract from “pixel-label” decisions to “pixel-pixel” decisions in the
absence of prototypes. Instead of directly assigning pixels to labels, we aim to decide for
each pair of pixels if they belong to the same cluster or not. These pairwise relationships
are encoded by self-assignment matrices which are low-rank matrix factorizations. Even-
tually, a one-parameter family of self-assignment matrices is defined by smooth geodesic
interpolation between different normalizations which correspond to two major relaxations
of the graph partitioning problem. Specifically, the interpolation marks a trade off between
combinatorial aspects (completely positive and doubly stochastic) and spectral aspects
(iso-spectral), which also reflects the well-known fact that the positivity and orthogonality
constraints are mutually exclusive.

Consequently, we also have to abstract the input data to a pairwise data affinity matrix
by considering a similarity measure between all pairs. This includes the basic scenarios of
pattern recognition and machine learning: distances between Euclidean feature vectors,
Riemannian distances between manifold-valued features and kernel matrices after embed-
ding given feature vectors into a reproducing kernel Hilbert space (RKHS) [HSS08]. Next,
we correlate self-assignments with pairwise similarities of the data as a clustering criterion
(data term), which has a clear interpretation and allows to exploit the low-rank structure
effectively.

Finally, we extend the supervised assignment flow (2.89) and propose the self-assignment
flow [ZZPS19b; ZZPS20b]. Thereby, only the likelihood map (2.86) is generalized by
lifting the gradient of the clustering criterion onto the assignment manifold to achieve
maximization of the criterion. Except for this more general definition, the subsequent
building blocks of the assignment flow remain unaltered, as do numerical schemes for
integration [ZSPS20].

A key parameter is the scale, the size of local neighborhoods in which evolving as-
signments driven by the flow affect each other. This parameter determines how fine or
coarse the resulting partition is, and how many corresponding latent prototypes can be
recovered under additional assumptions. At the same time, no bias affects the emergence
of latent prototypes. Furthermore, the very same framework is used for both learning these
prototypes and subsequent contextual data labeling (classification). In contrast to the
earlier coupled approach with explicit prototype evolution, the self-assignment flow is a
single process exclusively evolving on the assignment manifold.
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5.2. Coupled Flow: Direct Prototype Evolution

In numerical experiments we illustrate the proposed self-assignment flow and compare it
to state-of-the art clustering approaches on various basic examples of image analysis. In
addition, we demonstrate its plug-in-and-play principle by using a locally invariant patch
distance function for unsupervised patch dictionary learning and assignment as well as
transfer to novel data.

Organization. The remainder of this chapter is organized as follows:

• We briefly review the preliminary coupled flow to unsupervised data labeling with
explicit prototype updates on corresponding feature manifolds (Sect. 5.2).

• We motivate the concept of self-assignment by removing explicit prototypes and
replacing them by a copy of the given data to abstract from “pixel-label” decisions
to “pixel-pixel” decisions. (Sect. 5.3.1).

• We introduce a family of self-assignment matrices as low-rank matrix factorizations
by smooth geodesic interpolation between different normalizations (Sect. 5.3.2). We
state basic algebraic properties of the factorizations in (Prop. 5.3.2).

• We give detailed interpretations of the self-assignment matrices and show how latent
prototypes emerge and can be recovered (Sect. 5.3.3).

• We state mathematical properties of the set of full-rank assignments (Sect. 5.4.1).

• We propose the family of self-assignment flows (Sect. 5.4.3) by generalising the
likelihood map based on the self-assignment matrices (Sect. 5.4.2) and discuss the
numerical integration (Sect. 5.4.5) as well as key properties (Sect. 5.4.3 and 5.4.4) of
the flows.

• We discuss connections of the approach to related work from three different viewpoints:
spectral relaxation (Sect. 5.5.1), discrete optimal transport (Sect. 5.5.2) and matrix
factorization with aspects of combinatorial optimization (Sect. 5.5.3).

• Finally, we demonstrate and compare the approach in various numerical experiments
(Sect. 5.6), including unsupervised and locally invariant patch learning, assignment
and transfer to novel data (Sect. 5.6.4).

5.2. Coupled Flow: Direct Prototype Evolution

This section briefly summarizes our work [ZZÅ+18; ZZPS20a] on the coupled flow approach,
which extends the assignment flow (2.89) to unsupervised image labeling by learning appro-
priate features as labels from the data directly. Eventually, the coupled flow has sparked the
idea of self-assignment, which is detailed in the consecutive sections by further abstracting
from prototypes to pairwise relations between data points. Consequently, prototypes are
no longer involved explicitly in the self-assignment flow but implicitly determined simul-
taneously by a single flow. In contrast, the coupled flow approach couples two geometric
flows, the assignment flow and the explicit prototype evolution on the feature manifold,
in order to adapt labels to representative feature values during the spatially regularized
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5. Self-Assignment Flows

assignment process.

Following [ZZPS20a], the generic version of the coupled flow reads

(CF)


Ẇi(t) = RWi(t)Si(W (t)), Wi(0) = 1S , i ∈ I,

ḟ∗j (t) = α
∑
i∈I

qj,i(W ) grad d2
F (f∗j (t), fi), f∗j (0) = f∗0;j , α > 0, j ∈ J ,

(5.1)
which is coupling two geometric flows, the assignment flow (first component, Wi(t)) and
prototype evolution (second component, f∗j (t)), where the user parameter α enables to
adjust the relative time scale between the flows. The first component determines spatially
regularized assignments W (t) by a slightly generalized version the assignment flow (2.89)
which involves a time-varying distance matrix depending on the evolving prototypes f∗j (t)
instead of fixed prototypes as the original formulation does. The prototype evolution itself
is determined by the second component which represents Riemannian gradient descent
flows corresponding to the weighted Riemannian means

f∗j = arg min
f∈F

∑
i∈I

qj,i(W )d2
F (f, fi), j ∈ J . (5.2)

For each prototype f∗j (t), the weights q depend on the assignments W , i.e. the evolution
of the spatially regularized assignments and prototypes interact. The initial prototypes
f∗j (0) are determined by an approximation of metric clustering which covers the feature
space almost uniformly, as described in Section 2.4.3. Since the inference of assignments is
separately represented by W (t) ∈ W, the approach applies to arbitrary manifold-valued
data as long as the corresponding Riemannian means are well-defined and computationally
feasible.

The weights qj,i(W ) determining the Riemannian means (5.2) in turn depend on the
assignments W (t). Consequently, each prototype f∗j (t) evolves towards the average of all
data points fi assigned to it by W (t). More precisely in [ZZPS20a] we proposed a family of
weights qj,i which is given by interpolation between two distinguished cases. The first one
is motivated by incorporating spatial regularization to the manifold-valued expectation
maximization (EM) iteration [MP00; BMDG05] by replacing the mixture coefficients with
the pixelwise localized and spatially regularized assignments W (t).

In the second case we consider the column normalized assignments as weights

qj,i(W ) =
(
C(W )−1W>

)
j,i
, j ∈ J , i ∈ I, (5.3)

where the diagonal matrix C(W ) is defined in Eq. (5.8a). This choice is inspired by the so
called soft-assignments used in manifold-valued soft-k-means clustering [Teb07] to perform
mean-shift fixed point updates of the prototypes, which are induced by the optimality
conditions. Interestingly, the very same weights appear in the recovery of latent prototypes
derived in Section 5.3.3.2, which are also defined as Riemannian means over all data
points weighted by the normalized assignments for each cluster. Hence this version of the
coupled flow and the self-assignment flow with family parameter s = 0 are related in the
formation of (latent) prototypes. However, the numerical integration of the coupled flow
(5.1) involves explicit numerical updates on the corresponding feature manifold, which can
be computationally demanding. Additionally, how fast the two individual processes should
evolve relative to each other defines a free user parameter, and criteria for determining
proper values of this balancing parameter for specific applications are not yet available. In
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contrast, the self-assignment flow, proposed in the consecutive sections, is a single flow of
assignments which allows to perform numerical integration by efficient and sparse updates
schemes on the assignment manifold, detailed in Section 5.4.5.

5.3. Self-Assignment

This section prepares the generalization of the assignment flow (2.89) from supervised
labeling to completely unsupervised labeling. The prototypes (2.68) no longer are involved
but implicitly determined simultaneously in contrast to the coupled flow detailed in the
previous Section 5.2 which involves explicit evolution of prototypes on the feature manifold.
Here, our approach is (i) to assign given data (2.67) to itself in terms of a self-affinity
matrix parameterized by the assignment matrix W ∈ Rn×c (Section 5.3.2), which ensures
computational feasibility since c � n, and (ii) to generalize later on the likelihood map
(2.86) accordingly (Section 5.4.2). Except for this more general definition of the likelihood
map L(W ), the subsequent similarity map S(W ) given by (2.88) remains unaltered, as do
numerical schemes for integrating the flow (2.89) [ZSPS20].

In fact, we define a one-parameter family of self-assignment matrices by geodesic in-
terpolation of two extreme points on the positive definite manifold, that admit natural
probabilistic interpretations of the corresponding self-assignments. Properties of these
matrices also provide the basis for the interpretation of resulting self-assignment flows
(Section 5.3.3) and for pointing out connections to related work (Section 5.5).

5.3.1. From Labeling to Partitioning

Since the prototypes F∗ are unknown, we replace them by the given data Fn, to abstract
from “data-label” relations to “data-data” relations. Along with Fn and the underlying
graph G = (I, E), we assume a weighted similarity matrix

KF ∈ Sn (5.4)

to be given with entries

KF ;i,k = (KF )i,k = kF (fi, fk), i, k ∈ I (5.5)

measuring the similarity of data points fi, fk in terms of a symmetric function kF . A high
similarity value indicates that two data points are likely to be associated with the same
cluster. Consequently, defining a suitable similarity is important for practical application,
because it encodes aspects of the feature space topolgy which is how the approach sees
the data. The matrix KF is positive definite if kF evaluates the inner product of a data
embedding into a corresponding reproducing kernel Hilbert space (RKHS) space [HSS08].
A basic example is a Euclidean feature space (F , dF ) with norm dF (fi, fk) = ‖fi− fk‖ and

kF (fi, fk) = e−dF (fi,fk)2/σ2
. (5.6)

Let W ∈ Wc
∗ be a labeling. The column vectors W j , j ∈ J , of W indicate which data

points fi are assigned to the j-th cluster Ij corresponding to the partition{
Ij
}c
j=1

with I =
⋃̇
j∈J
Ij and Ij ∩ Il = ∅ (5.7)

of the vertices I representing data points Fn. Let us define the diagonal matrix

C(W ) := Diag(W>1n) = Diag(n1, . . . , nc) ∈ Sc+ (5.8a)
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with the cardinalities of each cluster

nj := |Ij |, j ∈ J (5.8b)

as entries. The quadratic form
1

2
〈W j ,KFW

j〉 =
1

2

∑
i,k∈I

kF (fi, fk)Wi,jWk,j =
1

2

∑
i∈Ij

kF (fi, fi)+
∑

i,k∈Ij : i 6=k
kF (fi, fk) (5.9)

measures the size of cluster Ij by the first sum of the right-hand side, which for common
kernel functions like (5.6) is proportional to the number nj of data points assigned to
cluster j. The second sum measures the connectivity in terms of the weights kF (fi, fk) of
all edges ik ∈ E connecting points i and k in this cluster. Assuming that all clusters are
non-empty, which amounts to the assumption

rank(W ) = c, (5.10)

we normalize the preceding expression by the cluster cardinality and subsequently sum
over all clusters, to obtain∑

j∈J

1

2nj
〈W j ,KFW

j〉 =
1

2

∑
j∈J

1

nj

∑
i∈Ij

kF (fi, fi) +
∑
j∈J

1

nj

∑
i,k∈Ij : i 6=k

kF (fi, fk) (5.11a)

=
1

2

∑
j∈J

1

nj
(W>KFW )j,j

(5.8a)
=

1

2
tr
(
C(W )−1W>KFW

)
(5.11b)

=
1

2
tr
(
KFA0(W )

)
, (5.11c)

with

A0(W ) = WC(W )−1W>, W ∈ Wc
∗. (5.11d)

For common kernel functions like (5.6), the first sum on the right-hand side of (5.11a)
is a constant. Objective (5.11c) therefore essentially measures the normalized similarity
weights not cut by the partition of the underlying graph.

Thus, the problem of partitioning the data and the underlying graph into c clusters
takes the form

max
W

tr
(
KFA0(W )

)
subject to W ∈ Wc

∗. (5.12)

We record basic properties of the matrix A0(W ).

Lemma 5.3.1. Let W ∈ Wc
∗. Then the matrix A0(W ) given by (5.11d) is

(a) nonnegative and symmetric,

(b) doubly stochastic,

A0(W )1n = A0(W )>1n = 1n, (5.13)

(c) and completely positive,

A0(W ) = Y Y >, Y ≥ 0. (5.14)

Proof. (a) is immediate. (b) follows from (5.8a) and the constraint W ∈ Wc
∗ (recall (2.71)).

(c) holds with Y = Y (W ) = WC(W )−1/2.

Property (c), i.e. a completely positive factorization of the matrix A0(W ) depending on
W , reflects the combinatorial difficulty of the optimization problem (5.12) – see, e.g., [BS18;
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Bom18] and references therein for more information about completely positive matrix
factorization. Therefore, various relaxations of the constraint W ∈ Wc

∗ are discussed next.

5.3.2. Self-Assignment Matrices, Relaxation

We start with the definitions of two basic self-assignment matrices. The first relaxation
based on (5.11d) drops both the integrality constraint and the rank constraint.

Definition 5.3.1 (Self-Affinity Matrix). The self-affinity matrix is defined as the
factorization

A0(W ) := WC(W )−1W>, W ∈ W. (5.15)

The second definition is based on the observation that equivalent expressions for the
normalizing matrix

C(W ) = W>W if W ∈ Wc
∗ (5.16)

differ after relaxing the feasible set Wc
∗. The equality (5.16) constitutes a generalized

orthogonality constraint which is equivalent to the integrality constraint. Dropping the
integrality constraint but keeping the rank constraint yields full-rank assignment matrices

Definition 5.3.2 (Full-Rank Assignments). The the set of full-rank assignment ma-
trices with column-rank c ≤ n is defined as

Wc :=
{
W ∈ W : rank(W ) = c

}
, (5.17)

as admissible assignments such that the normalizing matrix W>W is non-singular. This
gives the following definition.

Definition 5.3.3 (Self-Influence Matrix). The self-influence matrix is defined as the
factorization

A1(W ) := W (W>W )−1W>, W ∈ Wc. (5.18)

Definitions 5.3.1 and 5.3.3 differ by the normalizing matrices C(W ) and W>W , both of
which are positive definite. It is then natural to define a one-parameter family of factorized
matrices in terms of a geodesic connecting C(W ) and W>W on the manifold of positive
definite matrices Pc, which gives rise to the following definition.

Definition 5.3.4 (Self-Assignment Matrix). The self-assignment matrix with param-
eter s is defined as the factorization

As(W ) := Wγs(W )−1W>, s ∈ [0, 1], W ∈

{
W, if s = 0,

Wc, if s > 0,
(5.19a)

with normalizing matrix

γs(W ) = C(W )
1
2
(
C(W )−

1
2W>WC(W )−

1
2
)s
C(W )

1
2 ∈ Pc. (5.19b)

Note that Definition 5.3.4 corresponds to Definition 5.3.1 and 5.3.3 if s = 0 and s = 1,
respectively. Figure 5.1 depicts the relations between members of the family of self-
assignment matrices (Definition 5.3.4).

The following proposition collects properties of self-assignment matrices defined above.
Property (h) refers to a relation between matrices A1

(
W (t)

)
and A1

(
W (t′)

)
; for any

t, t′ ∈ [0, T ], they share the same eigenvalues.
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A0(W ) =
W −1

W> A1(W ) =
W −1

W>

C(W )
W>W

γs(W )

As(W ) =
W −1

W>

combinatorial spectral
smooth interpolation

Figure 5.1.: Schematic overview of the one-parameter family of self-assignment matrices
As(W ) (Definition 5.3.4) which is defined by geodesic interpolation on the positive definite
matrix manifold between C(W ), normalizing the self-affinity matrix A0(W ) and W>W ,
normalizing the self-influence matrix A1(W ). The single parameter s parameterizes the smooth
interpolation between combinatorial and spectral properties, summarized in Proposition 5.3.2.

Proposition 5.3.2 (Properties of Self-Assignment Matrices). Let A0(W ) and A1(W ) be
given by Definition 5.3.1 and 5.3.3, respectively. Then these matrices have (3) or do not
have (7) the following properties.

self-affinity A0(W ) self-influence A1(W )

admissible assignments W ∈ W W ∈ Wc

(a) symmetric 3 3

(b) positive semi-definite 3 3

(c) nonnegative 3 7

(d) doubly stochastic 3 7

(e) completely positive 3 7

(f) rank ≤ c = c
(g) orthogonal projection 7 ΠR(W )

(h) iso-spectral 7 3

(i) eigenvalues ∈ [0, 1] {0, 1}
(j) multiplicity (λ = 1) = 1 = c
(k) multiplicity (λ = 0) ≥ n− c = n− c
(l) eigenvector(s) (λ = 1) 1n

(
W (W>W )−

1
2
)j
, j ∈ J

Proof. (a)-(f) are clear. We focus on (g)-(l).
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(g) One easily checks that A1(W ) = A1(W )2 is idempotent whereas A0(W ) is not. Taking
into account (a) implies the assertion for s = 1.

(h) Follows from (i) and (j) for s = 1.

(i) Case s = 0: The lower eigenvalue bound 0 follows from (a),(b), the upper bound 1
from (d) and [BP94, Thm. 5.3]. Case s = 1: This is immediate due to (g).

(j) Case s = 0: W ∈ W implies that A0(W ) is strictly positive. (i) and [BP94, Thm. 1.4]
then imply the assertion. Case s = 1: This is immediate due to (f),(g).

(k) Both assertions follow from (f).

(l) Case s = 0: Follows from (d) and [BP94, Thm. 5.3]. Case s = 1: Setting Y =
W (W>W )−1/2, one directly computes A1(W )Y = Y and Y >Y = Ic.

The last definition of this section concerns the ‘difference’ between the normalizing
matrices C(W ) and W>W of Definitions 5.3.1–5.3.4.

Definition 5.3.5 (Cluster-Confusion Matrix). The cluster-confusion matrix is defined
as the matrix factorization

B(W ) := C(W )−1W>W ∈ Rc×c+ , W ∈ W. (5.20)

Proposition 5.3.3 (Properties of the Cluster-Confusion Matrix). The cluster-confusion
matrix B(W ) has the following properties:

(a) entry-wise positive: B(W ) > 0
(b) row stochastic: B(W )1c = 1c
(c) pure clusters: B(W ) = Ic if and only if W ∈ Wc

∗.
(d) rank lower bound: 0 ≤ tr

(
B(W )

)
≤ rank(W ) with equality if W ∈ Wc

∗

Proof. (a)-(c) directly follow from the definitions of B(W ) and W c
∗ . (d) follows from

tr(B(W )) = tr(A0(W )) together with Proposition 5.3.2 (c) and (i).

5.3.3. Relaxations: Interpretation

We take a closer look at the relaxations of problem (5.12).

5.3.3.1. Self-Affinity Matrix

Following [ÅPSS17], we interpret each entry of the assignment matrix W ∈ W as posterior
probability

P (j|i) = Wi,j , j ∈ J , i ∈ I (5.21)

of label j, conditioned on the observation of the data point fi. In accordance with the
present unsupervised scenario, we assume the uniform prior distribution

P (i) =
1

n
, i ∈ I (5.22)
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of the data. Marginalization yields the label distribution

P (j) =
∑
i∈I

P (j|i)P (i) =
1

n

(
W>1n

)
j
, (5.23)

which measures the size of cluster Ij in terms of the relative mass of assignments. Invoking
Bayes’ rule, we compute the distribution analogous to (5.21), but with the roles of data
and labels reversed, to obtain

Q(k|j) =
P (j|k)P (k)

P (j)
=

Wk,j∑
i∈IWi,j

=
(
C(W )−1W>

)
j,k
. (5.24)

The probabilities of self-assignments fi ↔ fk, i, k ∈ I then result from marginalization
over the labels

A0;i,k(W ) :=
∑
j∈J

Q(k|j)P (j|i) =
∑
j∈J

Wi,j

(
C(W )−1W>

)
j,k

=
(
WC(W )−1W>

)
i,k
. (5.25)

This expression explains the relaxation that is at the basis of Definition 5.3.1. It specifies
the probability that two vertices i and k get assigned the same label (no matter which
one), i.e. that they belong to the same cluster.

Finally, the derivation of problem (5.12) – cf. (5.11) – showed that optimizing the
assignments in order to maximize the correlation (inner product) of A0(W ) and KF
amounts to cover the most similar data points by the components of the partition (clusters).

f ′1 f1

f ′2 f2

f ′3 f3

f ′4 f4

f ′5 f5

Labeling Data

Prototypes

W C(W )−1W>

Figure 5.2.: The self-affinity matrix A0(W ) due to Definition 5.3.1 comprises the probabilities
for each pair of data points fi, fk ∈ I to belong to the same cluster. The factorization
(5.25) of A0(W ) admits the interpretation that optimizing the assignments W implicitly forms
prototypes f∗j , j ∈ J that are assigned to the data themselves so as to maximize the correlation
with pairwise similarities given as entries of the matrix KF .

5.3.3.2. Recovery of Latent Prototypes

Although problem (5.12) does not involve prototypes (2.68), such prototypes can be
recovered from the solution W to the problem relaxation discussed in Section 5.3.3.1.
Specifically, the probabilities Q(i|j) given by (5.24) indicate the contribution of each data
point fi to cluster j. Consequently, adopting the manifold assumption that the data Fn are
sampled on a Riemannian manifold, prototypes can be recovered as weighted Riemannian
means by solving

f∗j = arg min
f∈F

∑
i∈I

(
C(W )−1W>

)
j,i
d2
F (f, fi), j ∈ J . (5.26)
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In the basic case of Euclidean data Fn ⊂ Rd, this problem yields the closed form averages

f∗j =
∑
i∈I

(
C(W )−1W>

)
j,i
fi, j ∈ J . (5.27)

Figure 5.2 illustrates the data self-assignment via the self-affinity matrix and latent
prototypes.

Remark 5.3.1. Reconvering latent prototypes from integral assignments W ∈ Wc
∗ results

in Riemannian means with uniform weights Q(i|j) = 1
nj

, normalization by the cluster sizes

nj . That means each data point of a cluster contributes equally to its representative.

Remark 5.3.2 (Relation and Differences to Basic Clustering). Choosing the squared
Euclidean norm d2

F(f, fi) = ‖f − fi‖2 in Eq. 5.26 determines the prototype f∗j , like
k-means clustering, as arithmetic mean (5.27) of the data fi assigned to cluster j ∈ J
by the variables

(
C(W )−1W>

)
j,i

. However, unlike k-means clustering and its variants
that alternatingly update prototypes and assignment variables, the prototypes f∗j , j ∈ J
are not explicitly involved in our self-assignment flow approach. Rather, Eq. 5.27 is
evaluated after convergence of the self-assignment flow (5.56). Section 5.4.4 reveals that
the dependency f∗j = f∗j (W ) of (5.26) is consistent with graph partitioning through the
self-assignment flow W (t), in that prototypes f∗j that are implicitly determined by (5.27)
maximize class separability. The usual initialization problem of basic clustering is handled
by the self-assignment approach through the initialization W (0) of (5.56a) in terms of
the given data. In addition, we point out that basic clustering is lacking the influence of
the spatial assignment regularization through geometric averaging – cf. (2.88) – on the
formation of prototypes.

5.3.3.3. Self-Influence Matrix

Let W ∈ Wc be given and temporarily assume that d-dimensional Euclidean feature vectors
are given as data Fn and collected as row vectors in the matrix

F = (f1, . . . , fn)> ∈ Rn×d. (5.28)

Let the matrix

F ∗ = (f∗1 , . . . , f
∗
c )> ∈ Rc×d (5.29)

collect the prototypes. Given W and F , a least-squares fit yields

F ∗ = arg min
G∈Rc×d

1

2
‖WG− F‖2F = (W>W )−1W>F, (5.30)

which is well-defined since W ∈ Wc has full rank. Using these prototypes in turn for
predicting data F̂ by assignment yields

F̂ = WF ∗ = W (W>W )−1W>F = ΠR(W )F = A1(W )F. (5.31)

Finally, optimizing the assignments W in order to obtain the best prediction of the data
itself, gives with A1(W )2 = A1(W )

arg min
W∈Wc

1

2
‖A1(W )F − F‖2F = arg max

W∈Wc
tr
(
A1(W )FF>

)
, (5.32)

and the initial assumption of Euclidean data can be dropped by replacing the Euclidean
Gram matrix FF> with a general inner product matrix KF corresponding to an embedding
of the data into a reproducing kernel Hilbert space.
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As a result, the relaxation of problem (5.12) due to Definition 5.3.3 can be interpreted
as finding the best c-dimensional subspace R(W ) spanned by the (soft) indicator vectors
of the c clusters (column vectors of W ) for self-prediction of the given data.

A related spectral interpretation results from rewriting the objective as

tr
(
A1(W )KF

)
= tr

(
W (W>W )−1W>KF

)
= tr

(
(W>W )−

1
2W>KFW (W>W )−

1
2
)

(5.33a)

= tr
(
Y (W )>KFY (W )

)
, Y (W ) = W (W>W )−

1
2 . (5.33b)

We conclude from Proposition 5.3.2 that Y (W ) varies over the compact Stiefel manifold,

Y (W ) ∈ St(c, n) = {X ∈ Rn×c : X>X = Ic}, (5.34)

and that the objective (5.33) is the Rayleigh quotient [AMS09, Sec. 4.8] whose maximizer
Y spans the subspace of the c dominant eigenvectors of KF [HM96, Ch. 1]. Note, however,
that Y (W ) cannot vary freely but is parameterized by W ∈ Wc.

5.3.3.4. Comparision between A0(W ) and A1(W ).

The Factorization A1(W ) differs from A0(W ) in that the normalizing matrix C(W ) of the
former self-assignment matrix is replaced by W>W in the latter. A consequence due to
Proposition 5.3.2 is that A1(W ) is no longer doubly stochastic and may have negative
entries. Hence the probabilistic interpretation (5.25) of the factorization of A0(W ) no
longer holds for A1(W ). Since A0(W ) has strictly positive entries, it can be seen as an
irreducible adjacency matrix and the underlying graph has only one connected component.
On the other hand, unlike A0(W ), the matrix A1(W ) has fixed rank c and embeds the
data immediately into a corresponding subspace.

Formulas (5.27) and (5.30) for the formation of latent prototypes (Euclidean case) are
the same when using A0(W ) or A1(W ), up to the different normalizing matrices. How these
prototypes are used to represent the data is made explicit by Figure 5.2 and Eq. (5.31),
respectively. In case of integral assignments W ∈ Wc

∗ both matrices A0(W ) and A1(W )
are equivalent. What labelings are computed, however, depends on the self-assignment
flow (Section 5.4) and hence on the parameter s ∈ [0, 1]

With help of the cluster-confusion matrix B(W ), the self-influence matrix A1(W ) can
be rewritten as

A1(W ) = WB(W )−1C(W )−1W>, (5.35)

which resembles the structure of A0(W ). In view of (5.27), the latent prototypes are
additionally transformed by the inverse of B(W ).

5.3.3.5. Cluster-Confusion Matrix

Using (5.21) and (5.24), the entries of the cluster-confusion matrix (5.20) take the form

Bj,l(W ) :=
∑
i∈I

P (l|i)Q(i|j) =
(
C(W )−1W>W

)
j,l
, j, l ∈ J , (5.36)

which is a marginalization over the vertices. This expression may be interpreted as the
probability that clusters Ij and Il are connected (soft partition) as opposed to the case of
integral assignments W ∈ Wc

∗, in which case B(W ) = Ic and all clusters are disjoint (hard
partition).
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5.4. Self-Assignment Flows

In this section, we generalize the assignment flow (2.89) to the unsupervised scenario
discussed in Section 5.3. We explore mathematical properties of the submanifold of full-
rank assignments (Section 5.4.1) to determine a smooth geometric setting that the resulting
unsupervised flows are well-defined. Generalizing the likelihood map (2.86) is the major
step (Section 5.4.2). The remaining components of the assignment flow remain unchanged,
except for starting the flow at the perturbed barycenter of the assignment manifold in
order to break the symmetry through the data, in the absence of prototypes (Section 5.4.3).
Next, we complement in Section 5.4.4 the interpretations of the relaxations underlying the
self-assignment flow (Section 5.3.3) and show that the latent prototypes determined by the
flow maximize class separability. Finally, numerical aspects are discussed in Section 5.4.5.

5.4.1. Riemannian Submanifold of Full-Rank Assignments

Here we collect important mathematical aspects of full-rank assignments Wc, Definition
5.3.2 in order to determine a smooth geometric setting, in which the unsupervised general-
ization of the assignment flow can be described properly. The set of full-rank assignments is
equivalently characterized as intersection of the assignment manifold with the non-compact
Stiefel manifold

Wc =W ∩ Rn×c∗ . (5.37)

Hence Wc is an open subset of W, since it is the intersection of open sets. Proposition
5.4.1 states the fact, that Wc is a Riemannian submanifold of the assignment manifold W
endowed with the Fisher-Rao product metric.

Proposition 5.4.1. The open subset Wc ⊂ W is an (embedded) Riemannian submanifold
of the assignment manifold W equipped with the Fisher-Rao product metric. In particular
the tangent bundle is trivial and we have TWWc = T0.

Proof. [Lee13, Prop. 5.1]

The assignment manifold W is connected, however the full-rank assignment submanifold
Wc is defined by intersection and hence its connectedness is not immediate. Since we
are interested in integration over the Riemannian submanifold Wc we require Wc to have
a single connected component, otherwise some points of Wc may not be reachable from
arbitrary initialization.

In case of strictly less labels c than data points n, which is relevant for our application,
Proposition 5.4.2 answers the question of connectedness positively.

Proposition 5.4.2. The smooth manifold Wc is path-connected for c < n.

Proof. The proof relies on the basis exchange Lemma A.1.1 and on the fact, that in case
of c < n there exists at least one row of W ∈ Wc which can be used temporarily to swap
two rows by a continuous path with constant rank. For the complete proof see Appendix
A.1.
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For the sake of completeness, we show in Proposition 5.4.3 that the submanifold Wc is
not connected for c = n.

Proposition 5.4.3. The smooth manifold Wn is not connected.

Proof. We use the fact, that the general linear group GL(n) has two connected components
and construct two disconnected points in Wn ⊂ GL(n). For the complete proof see
Appendix A.1.

Since Wc is an open submanifold of the assignment manifold, the tangent spaces are
coinciding and hence the manifolds are of equal dimension (Proposition 5.4.1). Therefore
we can directly use the same geometric setting, the dually flat structure borrowed from in-
formation geometry by using the Fisher-Rao product metric together with the e-connection.
The corresponding exponential maps and their inverses are defined in Section 2.3.1, eq.
(2.80), by restricting to the submanifold. However, we must be aware that geodesics from
W ∈ Wc in direction V ∈ T0, i.e.

γW,V (t) = ExpW (tV ) ∈ Wc, (5.38)

are only defined in a local vicinity of the starting point W . For larger t > 0 we may leave
the submanifold, which means that the assignment matrix has rank decay. We will get
back to this point when integrating (see Section 5.4.5) the self-assignment flow, which is
derived in the following sections.

5.4.2. Generalized Likelihood Map

In the supervised case, for a given distance matrix DF (2.84), local label assignment is
simply achieved by determining separately the smallest component of the vectors DF ;i, for
every vertex i ∈ I. This corresponds to solving

min
W∈W

tr(DFW
>) (5.39)

and the likelihood map (2.86) lifts the scaled negative gradient of this objective function
component-wise toW . In view of problem (5.12) and the family of self-assignment matrices
due to Definition 5.3.4, a natural approach to generalize this supervised set-up to the
unsupervised case is to consider a clustering criterion instead, which is defined in Definition
5.4.1. Then, the local decisions based on −DF in the likelihood map are replaced by the
gradient ∇Es(W ) of the clustering objective.

Definition 5.4.1 (Clustering Criterion). Let KF ∈ Sn be a weighted similarity matrix
and As(W ) a self-assignment matrix for s ∈ [0, 1]. Then, the clustering criterion is defined
as the following optimization problem:

max
W

Es(W ) subject to W ∈

{
W, if s = 0

Wc, if s ∈ (0, 1]
(5.40a)

Es(W ) = tr
(
KFAs(W )

)
, (5.40b)

where Es(W ) is the clustering objective.

The corresponding gradients of the clustering objective, Definition 5.4.1, are stated in
the following Proposition 5.4.4 for s = 0 and s = 1.
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Proposition 5.4.4 (Euclidean Gradient of Es(W )). Let Es(W ) be given as in (5.40b).
Then, the Euclidean gradient of Es(W ) reads:

s = 0 :

∇E0(W ) = 2KFWC(W )−1 − 1n diag
(
C(W )−1W>KFWC(W )−1

)>
, (5.41a)

s = 1 :

∇E1(W ) = 2
(
In −A1(W )

)
KFW (W>W )−1. (5.41b)

Proof. The calculation of the matrix valued gradients of (5.40b) for s = 0 and s = 1 is
straightforward with help of the directional derivative in direction V , i.e.

dEs(W )[V ] =
d

dt
Es(W + tV )

∣∣
t=0

= tr(∇Es(W )V T ), ∀V ∈ Rn×c. (5.42)

In order to substantiate this approach, we interpret the gradients from Proposition 5.4.4
using the concepts from Section 5.3.3. For illustration, let KF = FF> be a Euclidean inner
product matrix, with F given by (5.28). Equation (5.27) determining the latent prototypes
as averages weighted by the likelihood Q(i|j), defined in Equation (5.24), reads

f∗j =
∑
i∈I

(
C(W )−1W>

)
j,i
fi =

(
C(W )−1W>F

)
j
, (F ∗)> = F>WC(W )−1. (5.43)

From Proposition 5.4.4 with s = 0 we have

∇E0(W ) = 2FF>WC(W )−1 − 1n diag
(
(F>WC(W )−1)>F>WC(W )−1

)>
(5.44a)

= 2F (F ∗)> − 1n diag(F ∗(F ∗)>)>, (5.44b)(
∇E0(W )

)
i,j

= 2〈fi, f∗j 〉 − ‖f∗j ‖2 = −‖fi − f∗j ‖2 + ‖fi‖2, (5.44c)

where the prototypes f∗j = f∗j (W ) depend on W . The last term on the right-hand-side of
(5.44c) does not depend on j and hence is factored out – cf. Remark 2.3.1 – when lifting
the vector (5.44c) to the assignment manifold as follows. Hence, we ignore this term and
generalize the likelihood map (2.86) to

L0;i(Wi) = expWi

(1

ρ
∇E0(W )i

)
= expWi

(
− 1

ρ

(
‖fi − f∗j ‖2

)
j∈J

)
, (5.45)

which amounts to replacing the distance vectors DF ;i, for given prototypes in the supervised
case, by a varying squared distance depending on latent prototypes, which emerge when
the assignments W (t) follow the assignment flow.

A second relation is stated in Proposition 5.4.5 and Corollary 5.4.6 to motivate Definition
5.4.1, where we still assume the Euclidean setting with KF = FF>. In the absence of
prototypes F∗ we replace them by a copy of the input data F and construct a quadratic
distance matrix DF ,F according to (2.84).

Proposition 5.4.5 (Kernel Matrix and Distance Matrix). Let KF = FF> ∈ Sn be a
linear kernel matrix with F given by (5.28) and A0(W ) a self-affinity matrix, defined in
Definition 5.3.4. Then, we have the equality:

1

2
tr
(
A0(W )DF ,F

)
= tr

(
F>(I −A0(W ))F

)
= tr

(
(I −A0(W ))KF

)
(5.46)

81
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Proof. A straightforward calculation shows the
1

2
tr
(
A0(W )DF ,F

)
=

1

2

∑
i,k∈I

A0(W )i;k‖Fi − Fk‖22 (5.47a)

=
1

2

∑
i,k∈I

A0(W )i;k‖Fi‖22 − 2A0(W )i;k〈Fi, Fk〉+A0(W )i;k‖Fk‖22

(5.47b)

=
∑
i∈I
‖Fi‖22 −

∑
i∈I
〈Fi,

∑
k∈I

A0(W )i;kFk〉 (5.47c)

= tr
(
FF>

)
− tr

(
F>A0(W )F

)
= tr

(
(I −A0(W ))KF

)
, (5.47d)

where the third equality follows from Proposition 5.3.2 (d) with s = 0.

Proposition 5.4.5 together with Definition 5.4.1 immediately imply Corollary 5.4.6.

Corollary 5.4.6. Let KF = FF> ∈ Sn be a linear kernel matrix with F given by (5.28)
and A0(W ) a self-affinity matrix, defined in Definition 5.3.4. Then, we have the equivalence:

arg max
W∈W

tr
(
A0(W )KF

)
⇔ arg min

W∈W
tr
(
A0(W )DF ,F

)
. (5.48)

This means the clustering criterion for s = 0, Definition 5.4.1, can be seen simply as
replacing assignments in (5.39) by self-assignments and prototypes by the input data
themselves.

Moreover, since this interpretation only depends on the inner product matrix FF>, it
generalizes to data embeddings into a reproducing kernel Hilbert space and a corresponding
data affinity matrix KF with entries (5.5).

Now let s = 1. We return to the ‘spectral’ interpretation in terms of (5.33) and (5.34).
Proposition 5.4.7 collects two properties of the clustering objective (5.40b).

Proposition 5.4.7 (Properties of E1(W )). Let W ∈ Wc. Then, the clustering objective
E1(W ), defined in (5.40b) for s = 1, has the following properties:

(a) homogeneity: E1(WG) = E1(W ) for all G ∈ GL(c)

(b) stationarity: ∇E1(W ) = 0 if and only if
span(W ) is an invariant subspace of KF

Proof. (a) a direct calculation shows

E1(WG) = tr
(
KFWG(G>W>WG)−1G>W>

)
= E1(W ). (5.49)

(b) since (W>W )−1 is non-singular we have

∇E1(W ) = 0 ⇔ 2
(
In −A1(W )

)
KFW (W>W )−1 = 0 (5.50a)

⇔ KFW −W (W>W )−1W>KFW = 0 (5.50b)

⇔ ∃R = (W>W )−1W>KFW ∈ Rc×c : KFW −WR = 0 (5.50c)

⇔ span(KFW ) ⊂ span(W ) (5.50d)
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The Riemannian gradient of the Rayleigh quotient [AMS09, Sec. 4.8]

E1(Y ) = tr(Y >KFY ) (5.51)

over the compact Stiefel manifold (5.34) equipped with the standard Euclidean metric
reads [AMS09, Sec. 4.8]

gradE1(Y ) = 2(In − Y Y >)KFY ∈ TY St(c, n). (5.52)

Next, we relate the Euclidean gradient (5.41b) to the Riemannian gradient (5.52) in
Proposition 5.4.8, by taking into account the parametrization Y (W ) ∈ St(c, n) in (5.33).

Proposition 5.4.8 (Relation Between∇E1(W ) and gradE1(Y (W ))). Let W ∈ Wc. Then,
the Euclidean gradient ∇E1(W ) is related to the Riemannian gradient gradE1(Y ) by the

parametrization Y (W ) = W (W>W )−
1
2 ∈ St(c, n) in the following way:

∇E1(W ) = 0 ⇔ gradE1(Y (W )) = 0. (5.53)

W ∈ Wc is a stationary point if and only if Y (W ) ∈ St(c, n) is a stationary point of the
Rayleigh quotient (5.51) over the compact Stiefel manifold St(c, n).

Proof.

∇E1(W ) = 2
(
In −A1(W )

)
KFW (W>W )−1 (5.54a)

= 2
(
In − Y (W )Y (W )>

)
KFY (W )(W>W )−

1
2 (5.54b)

= gradE1(Y (W ))(W>W )−
1
2 . (5.54c)

Since the second factor in (5.54c) is non-singular the assertion follows.

Proposition 5.4.7 and 5.4.8 together with the fact that KF is symmetric yield the
following Corollary 5.4.9.

Corollary 5.4.9. Let W ∈ Wc and Y (W ) = W (W>W )−
1
2 ∈ St(c, n). Then, span(W ) is

an invariant subspace of KF if and only if the columns of Y (W ) are eigenvectors of KF .

Consequently, the gradient (5.41b) is directly linked to the search direction (5.52) on
the compact Stiefel manifold, in order to determine the invariant subspace corresponding
to the c dominant eigenvectors of KF .

As a consequence of these considerations, we define for arbitrary s the generalized
likelihood map in Definition 5.4.2.

Definition 5.4.2 (Generalized Likelihood Map). Let s ∈ [0, 1] and Es(W ) given by
(5.40). Then, the generalized likelihood map is defined as

Ls;i(Wi) = expWi

(1

ρ
∇Es(W )i

)
. (5.55)

In addition, Definition 5.4.2 allows to fully exploit the low-rank structure of the factor-
ization As(W ), since storing the full n× n matrix is not required for any evaluation of the
gradients derived in Proposition 5.4.4

The next section introduces the family of self-assignment flows.
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Clustering
Criterion

Es(W ) = tr
(
KFAs(W )

)
−→ maxww� assign data onto itself by maximizing correlation (Def. 5.4.1)

Generalized
Likelihood

Map
Ls(W ) = expW

(
1
ρ∇Es(W )

)
ww� lift gradient onto the assignment manifold (Def. 5.4.2)

Similarity
Map

Si(W ) = ExpLs;i(W )

(∑
k∈Ni wik Exp−1

Ls;i(W )

(
Lk(W )

))
ww� spatial context by geometric regularization (Eq. (2.88))

Ẇ = RWS(W ), W (0) = exp1W (−εDF ,0), 0 < ε� 1 (Def. 5.4.3)

one-parameter family of self-assignment flows

Figure 5.3.: Overview of the essential building blocks composing the one-parameter family of
self-assignment flows, Definition 5.4.3. The clustering criterion abstracts “pixel-label” decisions
to “pixel-pixel” decisions in the absence of prototypes. Consequently the input data are
assigned onto themselves. This fact is encoded by the self-assignment matrix (a low-rank
factorization) which encodes for each pair of pixels if they belong to the same cluster or not.
The likelihood map (2.86) is generalized by lifting the gradient ∇Es(W ) with respect to the
assignments onto the assignment manifold in order to maximize the correlation between the
kernel matrix and the self-assignments (clustering criterion). Except for this more general
definition of the likelihood map, the subsequent similarity map (2.88) remains unaltered
from the supervised case, as do numerical schemes [ZSPS20] for integrating the resulting
self-assignment flows.

5.4.3. The Self-Assignment Flows

Besides replacing the likelihood map (2.86) by the generalized likelihood map (5.55), no
further changes are required in order to generalize the assignment flow (2.89) to the
unsupervised case, except for the initialization which cannot both start at the barycenter
and break the symmetry, without any prior information. This will be achieved by taking a
small perturbation of the barycenter as initial point.

Accordingly, we define the one-parameter family of self-assignment flows in Definition
5.4.3.

Definition 5.4.3 (One-Parameter Family of Self-Assignment Flows). Let s ∈ [0, 1]
and the similarity map S(W ) (2.88) based on the generalized likelihood map Ls(W ) (5.55)
and DF ,0 ∈ Rn×c+ be given. Then, the one-parameter family of self-assignment flows is
described by the parametrized dynamical system

Ẇ = RWS(W ), W (0) = exp1W (−εDF ,0), 0 < ε� 1 (5.56a)

W (t) ∈

{
W, if s = 0,

Wc, if s ∈ (0, 1].
(5.56b)
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The matrix DF ,0 is computed using the given data Fn as explained in Section 2.4.3. The
flow W (t) is restricted to the submanifold of full-rank assignments if s > 0.

Figure 5.3 depicts an overview of the building blocks which define the vector field for
the one-parameter family of self-assignment flows, defined in Definition 5.4.3.

Proposition 5.3.2 and Eq. (5.16) yield the following.

Corollary 5.4.10. Let W (t) solve (5.56). Then, for any t ≥ 0,

(i) the self-affinity matrix A0

(
W (t)

)
is doubly stochastic and completely positive, if s = 0;

(ii) the self-influence matrix A1

(
W (t)

)
is iso-spectral,

i.e. its eigenvalues satisfy λ1 = · · · = λc = 1 and λn−c = · · · = λn = 0, if s = 1.

(iii) A0

(
W (T )

)
= As

(
W (T )

)
= A1

(
W (T )

)
if W (T ) ∈ Wc

∗ for s ∈ [0, 1].

Property (iii) relates to the fact that W (t) solving (5.56) approaches a labeling W (T ) ∈
Wc
∗ for sufficiently large T after a trivial rounding step. We point out, however, that

solving (5.56) generally yields different paths W (t), t ∈ [0, T ] depending on s ∈ [0, 1] and
corresponding to the different relaxations discussed in Section 5.3.3. Once a labeling
W (T ) ∈ Wc

∗ has been computed using any s ∈ [0, 1], the solution is a local optimum of the
partitioning problem (5.12). This is what Corollary 5.4.10(iii) says.

Remark 5.4.1 (Parameters of the Self-Assignment Flow). We briefly explain the role
of each parameter involved in order to point out, that there is essentially a single user
parameter only, that has to be specified.

• Any small positive number ε > 0 determining W (0) by (5.56a) will do in practice.

• The parameter s ∈ [0, 1] of (5.56b) is chosen depending on the application: As Figure
5.5 illustrates, and as a consequence of the interpretations of the self-affinity matrix
A0(W ) (Section 5.3.3.1) and the self-influence matrix A1(W ) (Section 5.3.3.3), small
values s increase the sensitivity of the self-assignment flow to the spatial structure of
the partition of the underlying graph G, whereas large values s make the approach
more sensitive with respect to the quantization of the feature space F in terms of
the prototypes, that are implicitly determined by the self-assignment flow (Section
5.3.3.2).

• Parameter ρ of the likelihood map (2.86) merely normalizes the scale of the input
similarity matrix KF , that can be small or large depending on the particular data
under consideration.

• The fixed stepsize h > 0 used in this work for geometric numerical integration (Section
5.4.5) can be determined automatically if a more advanced numerical scheme with
adaptive stepsize control is employed, as worked out by [ZSPS20].

• Parameter c ∈ N merely specifies an upper bound of the number of clusters, whereas
the resulting effective number of clusters ĉ ≤ c does not need to be specified beforehand
(see Definition 5.4.4 below).

As a result, the only parameter that critically influences the result returned by the
self-assignment flow is the size |Ni| of the neighborhoods (2.70), that determines the scale
of geometric spatial regularization (2.88) and, in turn, the number ĉ of effective clusters.
Section 5.6 provides numerous illustrations.
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5.4.4. Self-Assignment Performs Self-Supervision

We interpret the assignment flow from another angle complementing the interpretations
discussed in Section 5.3.3.

In Section 5.3.3.2, we showed that following the assignment flow entails learning of
latent prototypes that can be explicitly recovered if weighted means in the data space
are well-defined and computationally feasible. Let us temporarily adopt the Euclidean
situation (5.27). With these recovered prototypes at hand, we get back to Section 2.4.1 and
ask how our approach relates to the supervised situation where the quality of the clustering
can be assessed by objectives like (2.100). Assuming a labeling W = W (T ) ∈ Wc

∗ has been
determined, let the recovered prototypes f∗j (W ), j ∈ J which depend on the assignment,
play the role of empirical means mj , j ∈ J . We compute the quantities (2.97) in terms of
the data matrix F (5.28)

Pj =
1

n
〈W j , 1n〉 =

1

n
|Ij |, j ∈ J (prior probabilities) (5.57a)

f∗j (W ) = F>
(
WC(W )−1

)j
, j ∈ J (class-conditional mean vectors) (5.57b)

f∗ =
1

n
F>1n, (mean vector). (5.57c)

Using these expressions, we can evaluate the scatter matrices (2.98) in turn. This is
collected in Proposition 5.4.11.

Proposition 5.4.11 (Scatter Matrices for Latent Prototypes). Let W ∈ W and Sw, Sb
be defined in (2.98). Then, the following expressions hold:

St =
1

n

∑
i∈I

(fi − f∗)(fi − f∗)> =
1

n
F>
(
I − 1

n
1n1>n

)
F, (5.58a)

Sw(W ) =
1

n

∑
j∈J

∑
i∈Ij

(fi − f∗j (W ))(fi − f∗j (W ))> =
1

n
F>
(
I −A0(W )

)
F, (5.58b)

Sb(W ) =
∑
j∈J

Pj(f
∗
j (W )− f∗)(f∗j (W )− f∗)> =

1

n
F>
(
A0(W )− 1

n
1n1>n

)
F. (5.58c)

Proof. The assertions follow after straightforward calculations by inserting the expressions
(5.57) into (2.98).

Regarding the dependency on W , we observe that the within-class scatter matrix Sw(W )
involves the term F>A0(W )F and the between-class scatter Sb(W ) the term −F>A0(W )F .
Hence, by minimizing the objective (5.12), we simultaneously minimize tr(Sw) and maximize
tr(Sb), which is stated in the following Corollary 5.4.12.

Corollary 5.4.12 (Latent Prototypes Separate Clusters Optimally). Let W ∈ W and
Sw(W ), Sb(W ) given by (5.58). Then, the following equivalence holds:

arg min
W

tr
(
Sw(W )

)
⇔ arg max

W
tr
(
Sb(W )

)
⇔ arg max

W
tr
(
A0(W )FF>

)
.

(5.59)

Proof. The claim follows by inserting the expressions from Proposition (5.4.11) and remov-
ing constant terms.
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We conclude that latent prototypes determined by the self-assignment flow turn a
completely unsupervised scenario into a supervised one, in agreement with established
measures for class separability like (2.100). This interpretation also remains valid when
the relaxation with s = 1 and objective (5.32) is used to compute a labeling W , due to
Corollary 5.4.10(iii).

Moreover, since the approach only depends on the inner product matrix FF>, it
generalizes to data embeddings into a reproducing kernel Hilbert space and a corresponding
data affinity matrix KF with entries (5.5).

5.4.5. Geometric Numerical Integration

We distinguish the two cases (5.56b).

Case s = 0. We directly apply the methods studied in [ZSPS20]. To make this thesis
self-contained, we merely state the simplest scheme, the geometric Euler method. This
explicit scheme with fixed step-size h > 0 reads

W
(k+1)
i = Exp

W
(k)
i

(
hR

W
(k)
i

S(W (k))
)
, i ∈ I. (5.60)

It ensures that the self-assignment flow (5.56a) evolves properly on the assignment manifold
W. See [ZSPS20] for more advanced numerical schemes that run ‘automatically’ through
adaptive stepsize control. The iteration (5.60) stops when the average entropy of the
assignments W (K) drops at some iteration k = K below the predefined threshold 10−3,
which indicates (almost) unique label assignments and hence stationarity of the flow
evolution. Then numerical integration is terminated and a labeling W ∈ W ĉ

∗, ĉ ≤ c, is
determined using W (K) in a trivial postprocessing step by selecting the most likely label

for each row W
(K)
i , i ∈ I and removing the c− ĉ zero-columns (corresponding to empty

clusters) from the resulting labeling.

Definition 5.4.4 (Effective Number ĉ of Clusters (Labels)). We call the just de-
scribed number

ĉ ≤ c (5.61)

the effective number of clusters or labels, respectively. It is determined by the homogeneity
of the data Fn and by the scale

|Ni|, i ∈ I (scale) (5.62)

at which regularization is performed by the assignment flow through the similarity map
(2.88). We denote the corresponding index set of labels by

Ĵ ⊂ J , |Ĵ | = ĉ. (5.63)

Remark 5.4.2. The assertions of Corollary 5.4.10 as well as the considerations in Section
5.4.4 remain valid after replacing the upper bound c of the number of prototypes (labels)
and the corresponding index set J by ĉ and Ĵ , respectively, according to Definition 5.4.4.

Case s ∈ (0, 1]. Integration of the self-assignment flow (5.56a) restricted to the open
submanifold Wc of full-rank assignments (5.17) is more involved. Corresponding geodesics
only locally exist on W, i.e. full-rank assignment matrices cannot be guaranteed during
the numerical integration process (5.60), see Section 5.4.1 for details. Clearly, if the data
affinity matrix KF has high rank (induced by heterogeneous data) and if the scale (5.62)
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for regularization is not chosen too large, a full-rank labeling W ∈ Wc may be returned by
the self-assignment flow, that is well-defined in view of the relation (5.53).

In order to handle other cases while still using the numerical scheme (5.60) or more
sophisticated ones [ZSPS20], we simply replace the inverse normalizing matrix by its
Moore-Penrose pseudo-inverse,

(W>W )−1 ←− (W>W )†. (5.64)

Whenever this regularization of the normalizing matrix becomes ‘active’, we extract the
effective number ĉ in a postprocessing step, as described above in the case s = 0.

5.5. Related Work and Discussion

The literature on clustering is vast. We therefore restrict the discussion to few major
methodological directions in the literature: graph cuts and spectral relaxation (Section
5.5.1), discrete regularized optimal transport (Section 5.5.2) and combinatorial optimization
for graph partitioning (Section 5.5.3).

5.5.1. Graph Cuts and Spectral Relaxation

Summing up the weights (affinities) of edges that are cut provides a natural quality measure
for graph partitioning. To avoid unbalanced partitions, such measures are normalized in
various ways, and spectral relaxations of the resulting combinatorial optimization problem
renders the computation of good suboptimal solutions feasible. We refer to [vLux07] for a
survey.

We focus on two basic balanced cut-criteria that can be expressed by the graph Laplacian

LF = DK,F −KF , DK,F = Diag(KF1n) (5.65)

and indicator vectors. The ratio-cut criterion reads

min
U∈Rn×c

tr(U>LFU) s.t. U ≥ 0, U>U = Ic, (5.66)

whereas the normalized-cut (Ncut) criterion [SM00] additionally uses the degree matrix
DK,F for normalization,

min
U∈Rn×c

tr(U>LFU) s.t. U ≥ 0, U>DK,FU = Ic. (5.67)

Due to the conjunction of nonnegativity and orthogonality constraints, both problems
(5.66) and (5.67) are difficult to optimize globally. Spectral relaxation means to drop
the element-wise nonnegativity constraint. Then the relaxed problems (5.66) and (5.67)
amount to solving an eigenvalue problem and a generalized eigenvalue problem, respectively.
The price to pay in either case is that the physical interpretation of U as indicator variables
is lost and must be recovered by an additional post-processing step, which is usually done
by applying the classical k-means algorithm.

A direct relation to the self-assignment flow is apparant in the case s = 1. Substituting

Y = D
1/2
K,FU in the spectral relaxation of (5.67) results in the problem

max
Y ∈Rn×c

tr
(
Y >K̃FY

)
s.t. Y >Y = Ic, (5.68)

that is, the Rayleigh quotient of the normalized affinity matrix K̃F = D
−1/2
K,F KFD

−1/2
K,F

has to be maximized over the compact Stiefel manifold (5.34). As already discussed
for s = 1 in connection with (5.33), assignments W following the self-assignment flow
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parametrize points Y (W ) ∈ St(c, n) on the compact Stiefel manifold that maximize the
Rayleigh quotient: Eq. (5.54c) shows that the driving force of the self-assignment flow
(generalized likelihood map) is directly linked to the gradient ascent of the Rayleigh
quotient over the compact Stiefel manifold. Finally, when the numerical integration of
the self-assignment flow terminates, then the resulting labeling W ∈ Wc

∗ together with

(5.16) ensures Y (W ) ≥ 0. Hence, after re-substitution, U(W ) = D
−1/2
K,F Y (W ) is directly

feasible for the original problem (5.67) and hence no ‘projection’ by k-means is required as
post-processing.

The common way to take into account spatial regularization in spectral clustering is
to augment given features by spatial coordinates. However, this strategy suffers from a
conceptual shortcoming, since augmentation makes the same feature vector differ when it
is observed at two different spatial locations. In contrast, the self-assignment flow performs
unbiased spatial regularization by smooth geometric averaging and recognizes closeness of
features no matter where they are observed.

5.5.2. Discrete Regularized Optimal Transport

The theory of optimal transport [Vil09; San15] has become a major modeling framework
for data analysis. Here we focus on discrete optimal transport and computational aspects
[BCPD99; Pey18].

We consider the case s = 0 and the self-affinity matrix A0(W ). Since A0(W ) is doubly
stochastic (Prop. 5.3.2), maximizing the objective E0(W ) (5.40b) may be interpreted as a
discrete optimal transport problem with cost matrix KF and uniform marginal measures
(5.22), (cf. Corollary 5.4.6). These marginals correspond to the data Fn and a copy of the
data, respectively, resulting in data self-assignment as discussed in Section 5.3.3.1.

For further interpretation, we consider the Euclidean case KF = FF>. Inserting the
explicit form (5.15) of A0(W ) into the objective E0(W ) and using (5.43), we obtain

E0(W ) = tr(KFWC(W )−1W>) = tr(WF ∗F>). (5.69)

Maximizing this objective function reveals what this problem relaxation actually means: A
linear assignment problem in terms of the assignment matrix W with varying inner product
matrix F ∗(W )F> as costs. Moreover, since W ∈ W, we have a fixed marginal W1c = 1n
and a the second marginal W>1n = diag

(
C(W )

)
which is free. Altogether, a quite difficult

problem is solved in terms of W : latent prototypes F ∗ are formed by transporting the
uniform prior measure to the support of the respective clusters, so as to maximize the
correlation E0(W ) of the assignments W and the inner product matrix F ∗F>.

We point out a key property of the assignment flow that makes this approach work: It
is the spatial regularization performed by the similarity map (2.88) that drives the entire
process, in addition to the underlying geometry that makes W (t) converge towards hard
assignments (labelings). In fact, without spatial regularization, the self-affinity matrix
A0(W ) = In would maximize E0(W ) assuming the similarity kF(fi, fk) is maximal if
fi = fk, which means that every given data point fi forms its own cluster. This trivial
solution is ruled out, by construction, through the factorization with rank upper bounded
by c and through geometric spatial averaging of assignments. The corresponding scale in
terms of the sizes of the neighborhoods (2.70) determines how coarse or fine the spatial
arrangement of the resulting clusters will be.

We informally summarize this discussion: Data self-assignment is defined by uniform
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marginal measures and a coupling measure parametrized by the assignment flow. Structure
in the data is induced by imposing a low-rank constraint (factorization) on the coupling
measure (transport plan) and through spatial regularization of the flow of assignments.

5.5.3. Combinatorial Optimization

Zass and Shashua [ZS05] studied the formulation of the clustering problem

max
Y ∈Rn×c

tr(KFY Y
>) subject to (5.70a)

(a) Y ≥ 0, (b) rank(Y ) = c, (c) Y >Y = Ic, (d) Y Y >1n = 1n (5.70b)

in terms of the completely positive factorization Y Y > and the constraints (a)–(d). We
notice that the orthogonality constraint (c) with respect to the columns of Y implies (b),
and that (a) together with (d) says that Y Y > is doubly stochastic. The authors show that

(a)–(d) imply that W = Y C(Y )
1
2 ∈ Wc

∗ is a labeling. This problem formulation differs
from more classical conditions ensuring W ∈ Wc

∗ [RW95, Lemma 2.1],

W ≥ 0, W1c = 1n, W>1n = (n1, . . . , nc)
>, tr(W>W ) = n, (5.71)

in that the cluster sizes (third constraint) do not have to be specified beforehand.

Regarding relaxation, the authors of [ZS05] argue that the orthogonality constraint (c)
is the weakest one. They propose a two-step procedure after dropping the constraints
(b) and (c): approximation of the data similarity matrix KF by a doubly stochastic
matrix using the Sinkhorn iteration, followed by a gradient ascent iteration with stepsize
control so as to respect the remaining constraints. The same set-up was proposed by
[YC16] except for determining a locally optimal solution by a single iterative process using
DC-programming. Likewise, [KYP15] explored symmetric nonnegative factorizations but
ignored the constraint enforcing that Y Y > is doubly-stochastic, which is crucial for cluster
normalization.

Our approach uses the factorization As(W ) given by (5.19) instead of Y Y > in (5.70),
we can relate the two factorizations by identifying the factor

Y (W ) = Wγs(W )−
1
2 , (5.72)

which is parametrized by assignments. While the rank constraint (b) and orthogonality
constraint (c) are dropped for s = 0, the constraints (a) and (d) are ‘built in’ by construction
of

Y (W ) = WC(W )−
1
2 ≥ 0, (5.73)

resulting in a completely positive and double stochastic factorization. Conversely, for s = 1,
spectral properties are retained (cf. Section 5.5.1). The orthogonality constraint (c) which
implies the rank constraint (b), holds for

Y (W ) = W (W>W )−
1
2 ∈ St(c, n), (5.74)

whereas constraints (a) and (d) are ignored. This agrees with the observation that
the constraints (a) and (c) cause the combinatorial difficulty of formulation (5.70), which
renders them to be mutually exclusive ((a) “physical quantity” vs. (c) “exclusive decisions”).
However, by Definition 5.3.4 of the one-parameter family of self-assignment matrices, we
can smoothly interpolate between combinatorial and spectral properties.

Furthermore, optimization is achieved by a single smooth and continuous process, the
self-assignment flow (5.56), which enables to apply numerous discrete numerical schemes
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[ZSPS20], all of which respect the constraints. Finally, geometric regularization within
local neighborhoods of each vertex of the underlying graph through the similarity map
(2.88) enforces the formation of ‘natural’ clusters, whenever assigning the same label to
close vertices is more likely to be correct.

5.6. Experiments

In this section, we demonstrate and evaluate the performance of the proposed one-parameter
family (5.56) of self-assignment flows (SAF) for unsupervised data labeling, using various
datasets and feature spaces (Figure 5.4).

After describing specific details of the implementation (Section 5.6.1), we report the
study of the two model parameters in Section 5.6.2, and the influence of affinity matrix
sketching for data reduction in a preprocessing step, to make learning from large data sets
computationally feasible. In Section 5.6.3, we compare our approach to various methods:
basic clustering, normalized spectral cuts with spatial regularization, and partitioning using
a variational decomposition of the piecewise constant Mumford-Shah model. We focus
on an attractive application of our approach in Section 5.6.4: Learning patch dictionaries
using the SAF based on a locally invariant distance function. Finally, as a sanity check,
we report the application of the SAF to problem data on a graph from a domain that is
unrelated to image analysis, to substantiate our claim that our approach applies to any
data given on any undirected weighted graph, in principle.

5.6.1. Implementation Details

Throughout this work, the SAF (5.56) was numerically integrated using the geometric
explicit Euler scheme (5.60) with step-size h = 0.1, as described in Section 5.4.5. For
parameter values s ∈ (0, 1], we applied (5.64) to avoid numerical problems when the
effective number of clusters ĉ < c (Definition 5.4.4) actually was smaller than the upper
bound c, which can be seen as an upper bound for the complexity of the solution. The
SAF with s = 0 does not encounter any such problems, due to the different normalization
involved in (5.15). From Proposition 5.4.4 we have given only gradient expressions for
s = 0 and s = 1 of the clustering criterion, to avoid tedious calculations we have employed
automatic differentiation for instances with s ∈ (0, 1). We adopted from [ÅPSS17] the
numerical renormalization step for the assignments with ε = 10−10, to avoid numerical
issues for assignments very close to the boundary of the assignment manifold. Numerical
integration was terminated when the average entropy of the assignments dropped below
the threshold of 10−3, which indicates that the current iterate is very close to an almost
unique assignment (labeling) W (k) ∈ W ĉ

∗.

Unless specified otherwise, the default value ρ = 0.1 (distance normalization in (2.86))
and uniform weights wi,k = 1/|Ni| (2.87) for assignment regularization were used in all
experiments, with neighborhoods Ni of equal size

|N | := |Ni|, ∀i ∈ Î, (5.75)

for interior pixels Î ⊂ I.

Data Fn were embedded using the standard Gaussian kernel (5.6) with parameter
σ =
√

0.1, in order to compute the affinity matrix KF (5.5). For larger datasets, a sketch
of KF was used as described in Section 2.4.2, with parameters q = 1 and ` = 100 random
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Seastar Fingerprint Cactus

Figure 5.4.: Input image data used in the numerical experiments (Fig. 5.5, 5.8, 5.9, 5.11,
5.12). Close-up views enable to compare the influence of model parameters on local image
structure in comparison to alternative approaches from related work. Both the Euclidean
RGB-space and locally invariant patch spaces were used as feature spaces. Regarding the
latter, additional real image data are processed in Figures 5.14 and 5.15.

samples drawn without replacement; see Section 5.6.2 for a validation. Finally, the initial
value W (0) of (5.56a) was chosen as small perturbation of the barycenter (5.56a) with
ε = 10−2 and initial distance matrix DF ,0, computed with the inexpensive greedy k-center
clustering algorithm, as explained in Section 2.4.3.

5.6.2. Influence of Model Parameters

The self-assignment flow (SAF) has three model parameters: The parameter s of the
self-assignment matrix As(W ) (5.19a), the neighborhood size |N | controlling the scale of
regularization, and the upper bound c on the effective number ĉ of labels (5.61).

5.6.2.1. Influence of s, |N | and c.

Figure 5.5 shows both labelings and recovered prototypes below each panel, depending
on s and |N |. We set c = 16 which is sufficiently large, since ĉ < c quickly happens when
lowering s even at the smallest scale of 3× 3 pixels. ĉ further drops down with larger scale.
Regarding the parameter s, we observe:

Small s Spatial regularization is more aggressively enforced, leading to compact codes in
terms of smaller numbers ĉ of effective prototypes.

Large s Distances in the feature space have more impact. Local image structure is better
preserved at the cost of a larger number ĉ of effective prototypes.

The second observation underlines the relation of the self-assignment flow, for s = 1, to
spatially regularized normalized cuts as worked out in Section 5.5.1.

92



5.6. Experiments

Figure 5.5 illustrates that depending on the application, the properties of the SAF can
be continuously controlled by setting the parameter s, thanks to the geodesic interpolation
(5.19).

s = 0 s = 0.25 s = 0.50 s = 0.75 s = 1

3
×

3
7
×

7
1
1
×

1
1

2
1
×

2
1

Figure 5.5.: Influence of the model parameters s ∈ [0, 1] parametrizing the SAF in terms of
the self-assignment matrix (5.19), the neighborhood size |N | controlling the scale of spatial
regularization, and the effective number ĉ ≤ c = 16 of labels. Recovered prototypes are
displayed below each labeling and aligned to each other (using linear assignment of the clusters)
to ease visual comparison. Prototypes that ‘died out’ are marked by a cross. We observe
that due to the geodesic interpolation (5.19), the influence of spatial regularization (small
s: compact image codes) relative to the influence of distances in the feature space (large s:
preserving local image structure) can be continuously controlled.

5.6.2.2. Evolution of Cluster Sizes, Entropy, and Rank Lower Bound

Figure 5.6 illustrates the evolution of the SAF in terms of the following measurements.

Cluster sizes For smaller values of s, more iterations are required for cluster formation.
This conforms with the observation in Section 5.6.2.1 that the SAF then promotes
spatial regularization. Conversely, larger values of s yield more balanced (uniform)
cluster sizes. This is consistent with the observation made in Section 5.6.2.1 that,
in this case, the SAF more carefully explores the feature space and preserves local
image structure.
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Average entropy The panels illustrate that the initial assignment is an ε-perturbation
of the barycenter on the assignment manifold, and that the termination criterion
was reached in all experiments. In agreement with the preceding point, the SAF
converges faster for larger values of s.

Rank lower bound The third row of Figure 5.6 displays the lower bound tr
(
B(W (k))

)
of

rank(W (k)) due to Proposition 5.3.3(d). After termination of the SAF, this lower
bound becomes sharp at W ∈ W ĉ

∗ and attains the number ĉ of effective prototypes.

Cluster-Confusion Matrix The bottom row of Figure 5.6 displays a color coded visual-
ization of the cluster-confusion matrix B(W ), which reveals the scattering between
clusters for s < 1 in accordance with the rank lower bound.
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Figure 5.6.: Evolution of relative cluster sizes, average entropy and lower bound of rank(W (k))
as a function of the SAF, depending on the iterations k for the experiment with |N | = 11× 11
depicted by Fig. 5.5. top: Smaller values of s promote spatial regularization. Hence more
iterations are required to form clusters. Larger values of s yield more uniform cluster sizes
which reflects the stronger influence of feature similarity and the preservation of local image
structure. 2nd row: The average entropy illustrates the random initialization ε-close to
the barycenter and that the termination criterion is reached in all experiments. The entropy
decays faster for larger values of s. 3rd row: The lower rank bound due to Proposition
5.3.3(d) becomes sharp when the SAF terminates at some labeling W ∈ W ĉ

∗ and attains the
number ĉ of effective labels. bottom: Visualizing the entries of the cluster-confusion matrix
B(W ) exhibits scattering between clusters for s < 1 which is in accordance with the rank
lower bound.
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5.6.2.3. Influence of Affinity Matrix Sketching

We evaluate the influence of sketching the data affinity matrix KF in a preprocessing step,
as described in Section 2.4.2, using the parameter value q = 1 and varying sample sizes `.

To this end, we focused on the experiment with s = 0, |N | = 3× 3 depicted by Figure
5.5 and compared the labelings obtained with and without sketching KF . To handle the
latter case where KF requires ≈ 177 GB of memory, we computed the entries for every
matrix-vector multiplication on the fly on GPUs using the software library KeOps1, rather
than holding the matrix in memory.

Figure 5.7 displays the relative error of different label assignments after sketching,
depending on the sample size `, where 100% corresponds to all n = 321 × 481 columns
of KF . For each value `, 100 runs were made using different random seeds. Figure 5.7
displays the average error along with the standard deviation. The corresponding curves
show that ` = 100 samples, i.e. merely 0.065% of all data points, suffice to eliminate the
effect of data reduction by sketching the input affinity matrix. This also underlines the
ability of the proposed SAF to abstract data by compact regions (clusters) represented by
only a few prototypes.

Figure 5.7.: Average relative labeling error plotted together with the standard deviation,
resulting from data reduction by sketching (see Sec. 2.4.2) the data affinity matrix KF for SAF
in dependency of the relative number of sampled pixels l (represented in %). The curves show
that merely 0.065% of all data points (corresponding to ` = 100 randomly sampled columns of
KF ) suffice to eliminate the effect of data reduction.

5.6.3. Comparison to Other Methods

We compared the SAF to the following methods:

Nearest neighbor clustering k-means and k-center clustering (no spatial regularization),
to show the influence of spatial regularization performed by the SAF on both labeling
and prototype formation;

AF Supervised assignment flow [ÅPSS17] with spatial regularization, using fixed prototypes
computed beforehand using nearest neighbor clustering, to highlight that the SAF
simultaneously performs unsupervised label learning and label assignment ;

1B. Charlier, J. Feydy, and J.-A. Glauns, KeOps Kernel Operations on the GPU, 2018,
https://www.kernel-operations.io/keops/index.html
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Figure 5.8.: Comparison of the SAF to nearest neighbor clustering and supervised assignment
flow (AF). Inspecting the results and the close-up views shows: Nearest neighbor clustering
yields noisy label assignments due to the absence of spatial regularization. The AF returns
spatially coherent partitions that may locally look unnatural (see close-up views), since the
prototypes are fixed and do not adapt to the spatial components of the resulting partition. The
unsupervised SAF learns labels adaptively during label assignment. The resulting partitions
have a natural spatial structure with increased details if s = 1. The latter effect is considerably
enhanced, independent of s, when nonuniform weights are used.
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Spectral Clustering [SM00] Fast Partitioning [SW14]
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Figure 5.9.: Comparison of the SAF to spectral clustering using feature vectors augmented
by spatial coordinates and normalized cuts, and to fast partitioning that approximates the
piecewise constant Mumford-Shah model. Spatial regularization as performed by spectral
clustering is clearly suboptimal, since weak regularization returns noisy partitions where strong
regularization yields biased clusters (e.g. red cluster). See the last paragraph of Section 5.5.1
for an explanation. Fast partitioning yields good labelings but does not consistently enforce
the scale of spatial regularization through the choice of γ – see, e.g. the small red clusters in
the panel on the right-hand side. This reflects that fast partitioning directly operates on the
feature space rather then separating data representation from inference, as does the SAF.

Spectral clustering We computed partitions using normalized spectral cuts [SM00] after
augmenting feature vectors by spatial coordinates xi, i ∈ I for spatial regularization.
The resulting data affinity matrix reads

KF i,k = exp
(
− ( 1

σ2 ‖fi − fk‖22 + α‖xi − xk‖22)
)
, i, k ∈ I, (5.76)

with parameter α > 0 controlling the influence of spatial regularization.

Fast partitioning A variational decomposition of the piecewise-constant Mumford-Shah
approach to image partitioning proposed by [SW14], using the publicly available
implementation “Pottslab” from the authors. The method operates directly on values
in the feature space, instead of using a reformulation with labels. Therefore, the
number of clusters can be large. For this reason, we applied an additional k-means
clustering step to the (over-segmented) results in order to have a direct comparison
in terms of labels and prototypes.

Two variants of the SAF were evaluated for comparison: (i) using uniform weights for
spatial regularization; (ii) using nonuniform weights determined in ”non-local means
fashion” by

wi,k =
w̃i,k
〈w̃i, 1n〉

with w̃i,k =

{
exp

(
− 1

ρ‖Pi − Pk‖
2
F

)
, if k ∈ Ni,

0, else,
(5.77)
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where Pi denotes the patch centered at pixel i. Throughout, the patch size as well as the
neighborhood size |N | for geometric averaging was chosen to be 5× 5 pixels.

The user parameters of all other methods were manually tuned so as to obtain best
comparable results.

5.6.3.1. Nearest Neighbor Clustering, Supervised Assignment Flow

Figure 5.8 displays the results. The close-up view of the results of nearest neighbor
clustering shows noisy label assignments even in homogeneous regions, due to the absence
of spatial regularization. By contrast, the AF returns spatially coherent labelings. However,
since the labels (prototypes) are fixed beforehand, their assignments yield partitions that
may locally look unnatural (see close-up views). Note that the prototypes displayed for the
AF were recomputed after convergence from the resulting partition and, therefore, differ
from the nearest neighbor prototypes that were used as input labels for computing the AF.

In comparison with these methods, the SAF yields more natural partitions due to forming
the labels during label assignment and preserves fine structure for s = 1, in agreement
with the experiments discussed in Section 5.6.2. This latter effect is considerably enhanced
when nonuniform weights (5.77) are used, independently of s, without compromising the
quality of the spatial structure of the resulting partitions.

5.6.3.2. Spatial Feature Augmentation and Normalized Spectral Cuts

Figure 5.9 displays the corresponding results for spectral clustering and fast partitioning,
respectively, using two parameter values enforcing weak and strong spatial regularization
in either case.

We observe that spectral clustering is highly sensitive to the value of α. Small values
yield noisy partitions, whereas larger values yield biased partitions (e.g. red cluster).
We attribute this strange behavior to the conceptual deficiency of spatial regularization
performed by feature augmentation, as discussed in the last paragraph of Section 5.5.1.

Fast partitioning returned the closest labelings to those computed by the SAF. The
scale of spatial regularization is not consistently enforced everywhere, however, as e.g. the
small red dots on the cactus arms reveal. We attribute this to the above-mentioned
fact that fast partitioning directly operates on the feature space, rather than separating
data representation from inference using labels and label assignments. In addition, the
variational decomposition may be susceptible to getting stuck in suboptimal minima.

5.6.4. Learning and Assignment of Patch Dictionaries

In this section, we base the self-assignment flow (SAF) on more advanced features, viz. fea-
ture patches, and a corresponding locally invariant distance function.

5.6.4.1. Locally Invariant Patch Distances

Let

NP,i, i ∈ Î, nP := |NP,i|, ∀i (5.78)

denote quadratic sections centered at pixel (vertex) i of the underlying image grid graph,
with uniform size nP = 2k+ 1 for some k ∈ N, for every i. We only consider region centers
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Figure 5.10.: Visualization of the distance functions (5.85) and (5.86) evaluated for a single
patch Pk and all patches P(Fn) of size nP = 7× 7 of the depicted image. The evaluation of
distance (a) amounts to determining the minimal distance of Pk to all equivalence classes of
patches generated by the patches of the entire image. As a consequence, equivalence classes
close to Pk generate the ‘blocky’ graph of the distance function. Conversely, evaluation of
distance (b) amounts to comparing the single equivalence class generated by Pk to all image
patches. As a consequence, the graph of the distance function reflects the original image
structure in more detail. The symmetric distance (rightmost panel) is the pointwise minimum
of distance (a) and (b). It is apparent that neither distance (a) nor (b) dominates the other
distance.

at interior grid points i ∈ Î ⊂ I such that no section NP,i extends beyond the boundary
of the graph, which implies

NP,i ⊂ I, ∀i ∈ Î. (5.79)

We define a patch centered at pixel i as the ordered tuple of data points

Pi =
(
fk1 , . . . , fi, . . . , fknP

)
⊂ FnPn , k1, . . . , knP ∈ NP,i, i ∈ Î, (5.80)

where the particular chosen order is arbitrary, but should be fixed for all patches. The
individual patch features are denoted by

Pi;m = fm, m ∈ NP,i (5.81)

and the collection of all patches induced by the data Fn is denoted by

P(Fn) =
{
Pi ∈ FnPn : i ∈ Î

}
. (5.82)

In order to define distance functions on the set of patches, which are invariant under
certain Euclidean isometries in the 2D image domain, we consider the dihedral group

D4 =
{

( 1 0
0 1 ),

(
0 −1
1 0

)
,
(−1 0

0 −1

)
,
(

0 1
−1 0

)
,
(−1 0

0 1

)
,
(

1 0
0 −1

)
, ( 0 1

1 0 ),
(

0 −1
−1 0

)}
⊂ O(2) (5.83)

generated by the following elements of the two-dimensional orthogonal group O(2): four
two-dimensional rotations by {0◦, 90◦, 180◦, 270◦} and the two reflections with respect to
the local coordinate axes, using the center pixel as origin. Since local grid coordinates
are mapped onto each other, we can identify each transformation of the group D4 with a
corresponding permutation σ of the pixel locations within the patch domain. Accordingly,
writing with abuse of notation σ ∈ D4, the corresponding transformed patch (5.80) is given
and denoted by

TσPi =
(
fσ(k1), . . . , fi, . . . , fσ(knP )

)
, k1, . . . , knP ∈ NP,i, σ ∈ D4. (5.84)

We point out that no interpolation is required to compute these patch transformations.

In addition to the transformations (5.84), we consider all translations Pi 7→ Pk, k ∈ N̂P,i
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5. Self-Assignment Flows

of patch Pi mapping the center location i to some grid location k within its own region
N̂P,i := NP,i ∩ Î restricted to interior pixels. We factor out these |D4| ·nP = 8 ·nP degrees
of freedom by considering all corresponding transformations of patch Pi as equivalent.
These equivalence classes of patches provide the basis for invariant patch distances as
defined next.

We define the asymmetric patch distance between two patches centered at pixel i ∈ Î
and k ∈ Î by

dF (Pi, Pk) = min
σ∈D4

j∈N̂P,i

∑
m∈[nP ]

dF
(
(TσPj)m, Pk;m

)
(5.85)

and the symmetric patch distance by

dsym
F (Pi, Pk) = min

{
dF (Pi, Pk), dF (Pk, Pi)

}
. (5.86)

Figure 5.10 illustrates these locally invariant distance functions.

5.6.4.2. Recovery of Patch Prototypes and Images

Distance (5.86) defines the affinity matrix (5.5) by (5.6) and in turn the likelihood map
(5.55) and the similarity map (2.88). As a consequence, the self-assignment flow can be
integrated to obtain the assignment W (t). In this section we focus on the recovery of
prototypical patches and on ‘explanations’ of input images by assigning these prototypical
patches. The corresponding results are illustrated by numerical examples in the subsequent
Sections 5.6.4.3 and 5.6.4.4.

According to Section 5.3.3.2, prototypical patches representing each cluster are deter-
mined as weighted averages

P ∗j = arg min
P∈P(F)

∑
i∈Î

(
C(W )−1W>

)
j,i
d2
F (Pi, P ), j ∈ J , (5.87)

with respect to the asymmetric patch distance (5.85), since the prototypical patch P ∈ P(F)
is not contained in the set of all image patches P(Fn) (5.82).

Using these prototypes, the corresponding image is computed as follows. For each
prototypical patch P ∗j , the optimal transformation for the assignment to pixel i is determined
as

(σ∗i,j , l
∗
i,j) = arg min

σ∈D4

l∈N̂P,i

∑
m∈[nP ]

dF
(
(TσPl)m, P

∗
j;m

)
. (5.88)

Using these transformations, a prototypical patch is assigned to every pixel i ∈ Î. This
implies that, for each pixel i, patches assigned to pixels k ∈ N̂P,i may assign a corresponding
patch entry to pixel i. Averaging these entries, normalized by the number of values
contributing to pixel i, defines the restored image value at pixel i.

To make this mathematically more precisely, we assume binary assignments W ∈ Wc
∗

and define the set of contributing pixels (overlapping after translation l∗i,j) to pixel i ∈ Î by

Mi =
⋃
j∈J

{
k ∈Mi,j : Wk,j = 1

}
, with Mi,j =

{
k ∈ N̂P,i : i ∈ N̂P,l∗k,j

}
, (5.89)

the reconstructed value for pixel i is defined as the average

f ′i =
1

|Mi|
∑
j∈J

∑
k∈Mi,j

Wk,j

(
Tσ∗i,jP

∗
j

)
m(l∗k,j ,i)

, (5.90)
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Figure 5.11.: Determination of locally invariant patch prototypes, their assignment to the
original image data and the corresponding partitions (depicted with pseudo-colors), using
the SAF (s = 0 and s = 1), different patch sizes (7 × 7, 11 × 11, 15 × 15) and numbers
of prototypes (c = 4 and c = 10). The underlying transformation group enables accurate
image representations even with only c = 4 patches, provided the patch size is close to the
spatial scale of local image structure (here: 7× 7 pixels). This performance deteriorates for
larger patch sizes. The SAF with s = 0 yields partitions that are spatially more regular than
the partitions computed with s = 1, since the latter tends to cover the feature space more
uniformly with patch prototypes, in agreement with the result depicted by by Figure 5.5.
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Figure 5.12.: Experiment of Fig. 5.11 repeated with a larger patch dictionary (patch size
nP = 15×15) leads to a detailed representation of local image structure. Although overlapping
regions of assigned prototypical patches are averaged at each pixel in order to restore an image,
the result ‘Assignment’ is close to the input data ‘Image’ of Fig. 5.10, due to using the locally
invariant patch distance. Panel ‘Difference’ shows the difference as gray-value plot. The lower
panel displays a 2D embedding of the learned prototypical patches. The corresponding colors
indicate their assignment in ‘Partition’ and ‘Overlay’. Clusters in the lower panel, e.g. those
colored pink and blue, illustrate the invariance under discrete rotations and reflections.

where m(l∗k,j , i) denotes the entry of the prototypical patch j, which overlaps with pixel i
after translating its center by l∗k,j from the contributing pixel k.

5.6.4.3. Patch-Based Self-Assignment Flow

Figure 5.11 illustrates image partitions, the corresponding c = 4 and c = 10 prototypical
patches of sizes nP ∈ {7 × 7, 11 × 11, 15 × 15}, as well as their assignment to the input
image data as described in the preceding section, based on integrating the SAF with s = 0
and s = 1 and spatial regularization parameter |N | = 3× 3.

In agreement with the discussion of the results depicted by Figure 5.5, we observe that
the SAF with s = 0 returns partitions with a more regular spatial structure, whereas the
SAF with s = 1 tends to cover the feature space more uniformly which yields partitions
with a irregular spatial structure.

The image recovered by assigning the prototypical patches exhibits relatively sharp spatial
structures, despite the small number of prototypes (c ∈ {4, 10}) and the pixelwise averaging
of grayvalues assigned by multiple patches. This illustrates that the small transformation
group defined in Section 5.6.4.1 which does not even require image interpolation, actually
is quite powerful. For example, the large blue region of the partition shown in Figure 5.11
resulting from the SAF with s = 0 and 7× 7 patches, indicates the optimal assignment of
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5.6. Experiments

Input c = 20 c = 60 c = 100

Figure 5.13.: ’Input’ images (left-most column) are represented in a compact way by unsu-
pervised patch learning and assignment using the SAF with s = 1, |N | = 3× 3 for geometric
regularization, and with increasing dictionary sizes c ∈ {20, 60, 100} of locally invariant patches
of size 7× 7, as described in Section 5.6.4. The recovered images are shown in the remaining
three columns. We observe that for more complex real-world scenarios, a larger number of
patches is required for representing all local details (e.g., see the arcs of the dome in the second
row). This suggests to extend the local patch invariance towards affine transformations with
arbitrary rotations and scalings, which requires more expensive interpolation of the pixel-grid,
however.
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Locally Invariant Patch Dictionary Learning using the SAF (s = 0)
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Figure 5.14.: The bottom row shows a dictionary of c = 20 locally invariant patches of size
7×7 pixels, respectively learned from the four images shown in the top row using the SAF with
s = 0 and |N | = 3× 3 pixels. The second and third row illustrate the patch assignments with
pseudo-colors and the recovered image data, respectively. Closeness of the restored images to
the input data, despite the small size of the patch dictionary, demonstrates the effectiveness of
the underlying discrete transformation group. The evolution of cluster sizes (bottom row, right
panel) illustrates the ability of the SAF to resolve ‘conflicting’ assignments due to mutually
overlapping patches successfully, along with the formation of invariant patch prototypes, in a
completely unsupervised way.

patches from a single equivalence class only. These patches fit quite accurately to image
structures with different orientations and local edge profiles. This effect deteriorates when
using patch sizes that are much larger than the typical variations of local image structure,
as the results for the patch size 15× 15 with c = 4 and c = 10 show.

As a comparison, Figure 5.12 shows the result for a larger number c = 100 of prototypes
with patch size nP = 15 × 15, which leads to a detailed representation of local image
structure. The lower panel displays a two-dimensional embedding of the weighted graph with
prototypes as patches and the similarities (5.6) as weights. Representatives of equivalence
classes of patches that are close to each other, are grouped together. Factoring out the group
of transformations effectively copes with different edge profiles and orientations. Panel
‘Difference’ shows the absolute difference between the input image and the reconstruction
from patch labeling.

We additionally evaluated the unsupervised patch-based SAF approach using various
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Patch Dictionary Evaluation using the supervised AF
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Figure 5.15.: Supervised regularized assignment of the locally invariant patch dictionary from
Figure 5.14 using the AF, to four novel images (top row). Since these images are semantically
similar to the training data from Figure 5.14, the restored images are close to the input data,
except for image (c) whose stone wall texture is not present in the training data.

real-world images. Figure 5.13 depicts the input data as well as the resulting patch
assignments for an increasing number of labels c ∈ {20, 60, 100}.

5.6.4.4. Patch Assignment to Novel Data

We repeated the experiment illustrated by Figure 5.11 using the data shown in Figure 5.14.
c = 20 locally invariant prototypical patches of size 7× 7 pixels were learned from 4 images
using the SAF with s = 0 and |N | = 3× 3 pixels. The restored images shown in the third
row are remarkably close to the input data (first row), despite the small size c = 20 of
the patch dictionary. This demonstrates again the effectiveness of the underlying discrete
transformation group.

Figure 5.15 shows in the top row novel image data that are semantically similar to the
training images of Figure 5.14 regarding the local image structure and texture (brick/stone,
door/window, grass/ivy). The corresponding partitions and recovered images solely resulted
from assigning the patch dictionary depicted by Figure 5.14 to the data by the supervised
assignment flow. Again, the quality of image represention using this small dictionary is
remarkable, except for the stone wall texture shown in column (c) of Figure 5.15, which is
not present in the training data.

5.6.5. Regularized Clustering of Weighted Graph Data

Our approach can be applied to any data given on any undirected weighted graph. For
illustration, we include an additional experiment using data not related to image analysis.

Figure 5.16 shows data in terms of a weighted graph (I, E ,KE) adopted from [GN02]. It

105



5. Self-Assignment Flows

Weighted Graph Ground Truth

Initialization Spectral Clustering [SM00]

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

++

+

+

+

+
+

+ +

+

+ +++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+ +

+

+

+

+
+ +

+
+

+

+

+

+

+

+

+

+

+

+

+ +

+

++

+

+ +

+

+

+

+

+

+

+

++

+

+

+

+

SAF, s = 0 SAF, s = 1

+

+

+
+

+

+
+

+

+
+

+ +

++
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

Figure 5.16.: Weighted graph data of American football games between Division IA colleges
during the regular season fall 2000 are clustered. Each node represents a team and edge weights
indicate the number of games played between two teams. The colored nodes in ‘Ground Truth’
show the subdivision of the teams into 12 conferences (clusters), that primarily play against
each other in a first period. Graph partitioning with c = 12 was performed using the SAF
with s = 0 and s = 1, and with weights defined by (5.91). Markers indicate labels assigned
to nodes that differ from ground truth. Starting from the initialization (2nd row, left panel)
which is noisy, the SAF with s = 1 returns almost the ground truth labeling and is also close
to the result of directly applying spectral clustering to KE . The SAF with s = 0 enforces label
assignments that are spatially more regular, and with empty clusters orange and purple.
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represents the network of American football games between Division IA colleges during
the regular season fall 2000. Teams are subdivided into 12 conferences, mainly based on
geographical distance, that primarily play against each other in a first period. Afterwards,
the conference champions play against each other in the final games. Each node of the
network represents a team. Edge weights KE i,k represent the number of games played
between two teams. Labels for each vertex indicate the conference to which a team belongs,
displayed by a corresponding color in Figure 5.16 (ground truth). We considered this
labeling as ground truth for the task to partition the graph into c = 12 classes. The initial
perturbation of the barycenter (5.56a) in terms of a distance matrix DF ,0 was computed
by assigning feature vectors to each node based on the c dominant eigenvectors of KE ,
followed by greedy k-center clustering (Section 2.4.3). Markers indicate nodes that were
assigned to a conference different from ground truth. Weights were defined as

wi,k =
w̃i,k
〈w̃i,1n〉

with w̃i,k = KE i,k + Diag(KE1n), (5.91)

i.e. by adding the total number of games played by each team to the diagonal.

The nearest neighbor assignment of the initial distance matrix contains many erroneous
assignments (Figure 5.16, initialization). The results of the SAF with s = 1 reproduces
almost the ground truth labeling and is also close to the result of applying spectral clustering
[SM00] directly to KE . The SAF with s = 0 enforces assignments with a more regular
spatial structure. Both findings agree with observations made in preceding experiments;
see e.g. Figure 5.5.

5.7. Conclusion

In this chapter we introduced a smooth dynamical system for unsupervised contextual
data labeling on arbitrary undirected weighted graphs. To this end, we extended the
supervised assignment flow to unsupervised scenarios, where no labels are available. To
remove the necessity of prototypes we replaced them with a copy of the input data by
abstracting from “pixel-label” decisions to “pixel-pixel” decisions. The resulting family
of self-assignment flows takes a pairwise affinity matrix as input data and maximizes
the correlation with a self-assignment matrix, corresponding to a low-rank factorization
parameterized by variables of the assignment flow. This allows the recovery of latent
prototypes, which are emerging during the evolution.

A single parameter s ∈ [0, 1] determines the self-assignment matrix as smooth geodesic
interpolation between the self-affinity matrix (s = 0) and the self-influence matrix (s = 1).
It enables to control the relative influence of spatial regularization and the preservation
of local image structures. In addition, a second parameter, the neighborhood size |N | for
geometric averaging of assignments, controls the scale of the resulting partition and the
resulting number of clusters. In particular, the self-assignment flow is a single process
exclusively evolving on the assignment manifold, such that numerical techniques developed
by [ZSPS20] for integrating the assignment flow directly apply.

We related our approach mathematically to different relevant viewpoints: rank-constrained
discrete optimal transport, normalized spectral cuts with unbiased spatial regularization
and relaxed combinatorial optimization in large-scale scenarios subject to spatial regulariza-
tion. We demonstrated the properties of our approach using various experiments including
the unsupervised learning of patch dictionaries using a locally invariant distance function.
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In the context of this work, an immediate question is, if the unsupervised self-assignment
flow can be extended to labeling problems with indirect measurements as input, which were
considered in the supervised case in the first two chapters for the application of discrete
tomographic reconstruction. This generalized setting in which neither the prototypes are
given beforehand nor the data to be labeled is directly available poses a challenging task
to solve for future work.

Another possible extension of the self-assignment flow concers problems defined on
directed graphs. This requires an asymmetric generalization of the self-assignment matrix
factorization involving two coupled assignment flows as factors. Moreover connections to
co-clustering have to be investigated, where the task is to simultaneously partition two
different data sets and associate the clusters between both sets

A different open problem concerns the incorporation of parameter estimation of weights
for application-specific adaptive regularization [HSPS19] in the unsupervised self-assignment
flow.

Promising directions of further research also include application-dependent extensions of
the invariance group in order to learn compact patch dictionaries using the self-assignment
flow in various scenarios.

Finally a rigorous mathematical exploration of the proposed smooth dynamical system
in terms of stability and convergence, analogous to the study [ZZS20] for the supervised
assignment flow, is left for future work.
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CHAPTER 6

Conclusion

Summary

With the work presented in this thesis we hope to have provided general, but also practically
applicable approaches for two challenging extensions of the data labeling problem. In
particular, we assumed that either the input data cannot be observed directly or the
prototypes are not available beforehand. In both cases, the missing information had to be
inferred during the assignment of labels. Therefore, our strategy has been to consistently
link the recovery of missing information as closely as possible to the labeling process. As a
result, it turned out that smoothness together with the compositional modular design of
the assignment flow framework are the key to intertwining both processes tightly. Finally,
a geometric view of the data labeling problem allowed the extension to more complicated
tasks.

Chapters 3 and 4 of this work were concerned with the scenario where no direct input
data are available. Instead, indirect measurements are available. The main application
we considered was discrete tomography reconstruction from only a few projection angles
with known intensities. Our strategy was to express the projection constraints directly
in terms of decision variables of the labeling problem. However, non-integral solutions
are introduced as convex combinations of prototypes. Motivated by the naive fixed-point
iteration, that labels the previous solution, we derived a non-convex discretization term for
pixelwise independent decisions which excludes non-integral solutions by using the prior
knowledge (prototypes). The resulting overall non-convex energy for joint reconstruction
and labeling was reliably and efficiently minimized by the difference of convex functions
algorithm which provably converges to a stationary point.

Afterwards we focused on the underlying geometric aspects of label decisions encoded
by discrete probability distributions. As a first step we derived a regularization term for
spatially coherent assignments based on the Bregman divergence which locally approximates
the squared geodesic distance induced by the Fisher-Rao information metric on the open
probability simplex. Finally, the geometric point of view led to a smooth Riemannian
gradient flow evolving on a submanifold including the tomographic projection constraints
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directly into the geometry of assignments. Therefore, the feasible set was equipped with a
Hessian Riemannian metric which naturally extends the Fisher-Rao metric of the assignment
manifold. Furthermore, we investigated corresponding implicit numerical schemes which rely
on Bregman proximal mappings for geometric integration. The reconstruction performance
turned out to be superior to the state of the art.

Chapter 5 was devoted to unsupervised scenarios of the data labeling problem. We
have introduced and studied a smooth dynamical system for unsupervised contextual
data labeling on arbitrary undirected weighted graphs. To this end, we extended the
supervised assignment flow to the unsupervised setting, where no labels are available.
In the absence of prototypes, we rigorously abstracted from “data-label” to “data-data”
decisions by introducing interpretable low-rank data representations, which themselves are
parameterized by label assignments. In particular, we have defined a one-parameter family
of self-assignment matrices by smooth geodesic interpolation between the normalization
factors of different low-rank matrix factorizations. This enabled interpolation between
combinatorial and spectral aspects. Finally, based on these factorizations we generalized
the likelihood map of the supervised assignment flow in a natural way. The resulting
unsupervised self-assignment flow simultaneously performs learning of latent prototypes in
the very same framework in which they are used for inference, i.e. label assignment.

We related the approach mathematically to different relevant viewpoints: rank-constrained
discrete optimal transport, normalized spectral cuts with unbiased spatial regularization
and relaxed combinatorial optimization in large-scale scenarios subject to spatial regulariza-
tion. We demonstrated the properties of our approach using various experiments including
the unsupervised learning of patch dictionaries using a locally invariant distance function.

Future Work

Finally, we would like to point out promising directions for further research that seem most
central to us:

• Combining the unsupervised scenario with indirect measurements as input. This
generalized setting in which neither the prototypes are given beforehand nor the data
to be labeled is directly available poses a challenging task to solve.

• Integrating the parameter estimation of weights for application-specific adaptive
regularization [HSPS19] into the unsupervised self-assignment flow framework.

• Extending the self-assignment flow to directed graphs, which requires an asymmetric
formulation of the self-assignment matrix factorization resulting in two coupled
assignment flows as factors. Moreover connections to co-clustering have to be
investigated, where the task is to simultaneously partition two different data sets and
associate the clusters between both sets.

• Analyzing in a rigorous mathematical way the proposed smooth dynamical systems,
the tomographic assignment flow and the self-assignment flow, in terms of stability
and convergence. Such issues are not covered by standard theory for dynamical
systems.

The author hopes that this these stimulates corresponding future research work.
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APPENDIX A

Supplementing Proofs

A.1. Supplementing Proofs of Chapter 5

The following lemma is required to prove the next proposition.

Lemma A.1.1 (Basis Exchange Lemma [Fis14]). Let V be a finite dimensional vector
space over K and B = {b1, b2, . . . , bn} a basis of V . Moreover let w ∈ V be represented
as a linear combination w =

∑n
i=1 λibi with λi ∈ K. Then for k ∈ [n] such that λk 6= 0

the basis vector bk can be exchanged by w and B̃ = {b1, . . . , bk−1, w, bk+1, . . . , bn} is also a
basis of V .

The following proposition refers to the manifold Wc of full-rank assignments that is
defined by Definition 5.3.2 and is discussed in Section 5.4.1.

Proposition A.1.2. The smooth manifold Wc is path-connected for c < n.

Proof. First we observe that permuting the rows of the matrix W ∈ Wc with c < n can
be realized by a continuous path in the set Wc. Let σ be a permutation of n elements
and Pσ ∈ Rn×n the associated permutation matrix. The row permuted matrix PσW again
belongs to the set Wc, since positivity and normalization are row-wise constraints and
the global rank constraint is invariant under permutation of rows. Then a continuous
path from W to PσW can be constructed by decomposing the permutation into successive
transpositions. Therefore it is sufficient to consider a path which swaps row k and l of
the matrix W . Since W ∈ Rn×c and rank(W ) = c with c < n we can select c linearly
independent rows from W which are indexed by the set I and we denote the indices of the
remaining rows by Ĩ = [n] \ I. It is important that Ĩ is non-empty since |Ĩ| = n− c > 0.
Now we distinguish three cases:
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1. swap rows k, l ∈ I: let p ∈ Ĩ
W (0) =

∑
i∈I

eiWi +
∑
j∈Ĩ

ejWj (A.1a)

W (1) =
∑
i∈I

eiWi +
∑

j∈Ĩ\{p}

ejWj + epWk (A.1b)

W (2) =
∑

i∈I\{k}

eiWi +
∑

j∈Ĩ\{p}

ejWj + epWk + ekWl (A.1c)

W (3) =
∑

i∈I\{k,l}

eiWi +
∑

j∈Ĩ\{p}

ejWj + epWk + ekWl + elWk (A.1d)

W (4) =
∑

i∈I\{k,l}

eiWi +
∑
j∈Ĩ

ejWj + ekWl + elWk, (A.1e)

where between each W (i) and W (i+1) for i = {0, 1, 2, 3} we define the path

γi,i+1 : [0, 1] −→Wc, t 7−→ (1− t)W (i) + tW (i+1), (A.2)

which is well-defined since the row-wise positivity constraints and normalization are
preserved under convex combinations (simplex is a convex set). In addition, for each
transition γi,i+1(t) there always exists a subset of c linear independent rows which
are constant with respect to t, hence rank(γi,i+1(t)) = c for t ∈ [0, 1]. In particular,
by construction we have I for γ0,1, I \ {k} ∪ {p} for γ1,2, I \ {l} ∪ {p} for γ2,3 and I
for γ3,4 as index sets for c constant and linear independent rows. Finally, by joining
all γi,i+1 we get a continuous path for swapping rows k and l.

2. swap rows k ∈ I and l ∈ Ĩ:

W (0) =
∑
i∈I

eiWi +
∑
j∈Ĩ

ejWj (A.3a)

W (1) =
∑
i∈I

eiWi +
∑

j∈Ĩ\{l}

ejWj + elWk (A.3b)

W (2) =
∑

i∈I\{k}

eiWi +
∑

j∈Ĩ\{l}

ejWj + elWk + ekWl, (A.3c)

(A.3d)

analogously to the first case we can construct a continuous path in the set Wc for
swapping rows k and l.

3. swap rows k, l ∈ Ĩ: we can define a single continuous path

γ : [0, 1] −→Wc, t 7−→ (1− t)W + t(W − ekWk − elWl + elWk + ekWl), (A.4)

in the setWc, since I is an index set for c linear independent rows which are constant
with respect to t, hence rank(γ(t)) = c.

Finally, we can always construct a continuous path from W to PσW by concatenation of
continuous paths of successive transpositions.

Next, let X and Y be two arbitrary points of the set Wc with fixed c < n. Then we
can find two permutations PσW and PσV such that the first c rows of W = PσWX and
V = PσV Y are linear independent, i.e. the first rows of each matrix form a basis of the
vector space Rc. The basic idea is to apply the basis exchange Lemma A.1.1 successively.
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Let p ∈ [c] be a row-index such that Wp can be exchanged with V1, i.e. λp 6= 0 for the
linear combination V1 =

∑c
i=1 λiWi. This exchange can be realized by a continuous path

in Wc through the following points

Z(0) = W =
c∑
i=1

eiWi +
n∑

j=c+1

ejWj (A.5a)

Z(1) =
∑
i∈[c]

eiWi +
∑

j∈[n]\[c+1]

ejWj + ec+1Wp (A.5b)

Z(2) =
∑

i∈[c]\{p}

eiWi +
∑

j∈[n]\[c+1]

ejWj + ec+1Wp + epV1 (A.5c)

Z(3) =
∑

i∈[c]\{p}

eiWi +
∑

j∈[n]\[c]

ejWj + epV1, (A.5d)

(A.5e)

where between each Z(i) and Z(i+1) for i = {0, 1, 2} we define the path

γi,i+1 : [0, 1] −→Wc, t 7−→ (1− t)Z(i) + tZ(i+1), (A.6)

which is well-defined since the row-wise constraints positivity and normalization are
preserved under convex combinations (simplex is a convex set). In addition, for each
transition γi,i+1(t) there always exists a subset of c linear independent rows which are
constant with respect to t, hence rank(γi,i+1(t)) = c for t ∈ [0, 1]. In particular, by
construction we have [c] for γ0,1, [c] \ {p} ∪ {c+ 1} for γ1,2 and [c] for γ2,3 as index sets
for c constant and linear independent rows. Note that, for the last segment γ2,3 we have
used, that {W1, . . . ,Wp−1, V1, bp+1, . . . ,Wc} is a basis by the basis exchange Lemma A.1.1.
Finally, by joining all γi,i+1 we find a continuous path for exchanging rows Wp and V1.
To exchange the Vk, k ∈ [c] with some Wp we have the starting point

Z =
∑

i∈[k−1]

eiVi +
∑

i∈[c]\[k−1]

eiWi +
∑

i∈[n]\[c]

eiWi, (A.7)

where we assume that the first c rows are rearranged by some permutation such that the
k − 1 first rows are the already exchanged {V1, . . . , Vk−1} and the remaining c− k + 1 are
(possibly renumbered) {Wk, . . . ,Wc} row-vectors of W . We can always find an index p ∈ [c]
with p > k−1 with λp 6= 0 for the linear combination Vk =

∑
i∈[k−1] λiVi+

∑
i∈[c]\[k−1] λiWi,

otherwise it would contradict the linear independence of Vi for i ∈ [c]. Hence we can
construct a continuous path in Wc through the following points

Z(0) = Z =
∑

i∈[k−1]

eiVi +
∑

i∈[c]\[k−1]

eiWi +
∑

i∈[n]\[c]

eiWi (A.8a)

Z(1) =
∑

i∈[k−1]

eiVi +
∑

i∈[c]\[k−1]

eiWi +
∑

j∈[n]\[c+1]

ejWj + ec+1Wp (A.8b)

Z(2) =
∑

i∈[k−1]

eiVi +
∑

i∈[c]\{[k−1]∪{p}}

eiWi +
∑

j∈[n]\[c+1]

ejWj + ec+1Wp + epVk (A.8c)

Z(3) =
∑

i∈[k−1]

eiVi +
∑

i∈[c]\{[k−1]∪{p}}

eiWi +
∑

j∈[n]\[c]

ejWj + epVk, (A.8d)

(A.8e)

which is similar to the first exchange step, hence we constructed a continuous path in Wc
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A. Supplementing Proofs

to exchange Vk by some Wp with p > k− 1. Thus we can concatenate all paths required to
exchange the first c rows of W and V to a single continuous path. Subsequently we can
find a suitable permutation PσZ of the resulting Z to rearrange the first c rows such that
they coincide with the first c rows of V . Next we can find a path between the remaining
(PσZZ)i = Wi and Vi for i ∈ [n] \ [c], which are linear dependent rows (since the first c
already form a basis). Therefore, we can define the path in Wc

γ : [0, 1] −→Wc, t 7−→ (1− t)PσZZ + tV, (A.9)

where the first c rows are constant with respect to t and linear independent, hence
rank(γ(t)) = c. Finally we have to undo the permutation from Y to V by using Y = Pσ−1

V
V ,

which again can be realized by some continuous path. The following diagram summarizes
all stages to construct a continuous path from X to Y

X
PσW−→ W

V1→Wp−→ · · · Vk→Wp−→ · · · Vc→Wp−→ Z
PσZ−→ PσZZ

Vi→Wi, i>c−→ V
P
σ−1
V−→ Y, (A.10)

which proofs that the set Wc is path-connected if c < n.

The following proposition refers to the manifold Wc of full-rank assignments that is
defined by Definition 5.3.2 and is discussed in Section 5.4.1.

Proposition A.1.3. The smooth manifold Wn is not connected.

Proof. We use the fact, that the general linear group GL(n) of invertible real matrices has
two connected components: matrices with positive determinant and matrices with negative
determinant.

After intersecting the general linear group with the assignment constraints, i.e. Wn =
W ∩GL(n) ⊂ GL(n) we still find two elements with a negative and positive determinant:

for a positive determinant we can choose the identity matrix perturbed by some small ε

W+ = (1− ε)In +
ε

n
1n×n ∈ Wn, (A.11)

for a negative determinant we can choose the identity matrix with two rows i and j swapped
by a permutation matrix Pπij and again perturbed by some small ε

W− = (1− ε)PπijIn +
ε

n
1n×n ∈ Wn. (A.12)

Since the determinant function is continuous there exists such an ε.

Finally the two elements W+ and W− cannot be connected in Wn since they cannot be
connected in the superset GL(n).
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2015.
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