3,188 research outputs found

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape

    Parallel Processing of Large Graphs

    Full text link
    More and more large data collections are gathered worldwide in various IT systems. Many of them possess the networked nature and need to be processed and analysed as graph structures. Due to their size they require very often usage of parallel paradigm for efficient computation. Three parallel techniques have been compared in the paper: MapReduce, its map-side join extension and Bulk Synchronous Parallel (BSP). They are implemented for two different graph problems: calculation of single source shortest paths (SSSP) and collective classification of graph nodes by means of relational influence propagation (RIP). The methods and algorithms are applied to several network datasets differing in size and structural profile, originating from three domains: telecommunication, multimedia and microblog. The results revealed that iterative graph processing with the BSP implementation always and significantly, even up to 10 times outperforms MapReduce, especially for algorithms with many iterations and sparse communication. Also MapReduce extension based on map-side join usually noticeably presents better efficiency, although not as much as BSP. Nevertheless, MapReduce still remains the good alternative for enormous networks, whose data structures do not fit in local memories.Comment: Preprint submitted to Future Generation Computer System

    Academic Cloud Computing Research: Five Pitfalls and Five Opportunities

    Get PDF
    This discussion paper argues that there are five fundamental pitfalls, which can restrict academics from conducting cloud computing research at the infrastructure level, which is currently where the vast majority of academic research lies. Instead academics should be conducting higher risk research, in order to gain understanding and open up entirely new areas. We call for a renewed mindset and argue that academic research should focus less upon physical infrastructure and embrace the abstractions provided by clouds through five opportunities: user driven research, new programming models, PaaS environments, and improved tools to support elasticity and large-scale debugging. The objective of this paper is to foster discussion, and to define a roadmap forward, which will allow academia to make longer-term impacts to the cloud computing community.Comment: Accepted and presented at the 6th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud'14

    Scather: programming with multi-party computation and MapReduce

    Full text link
    We present a prototype of a distributed computational infrastructure, an associated high level programming language, and an underlying formal framework that allow multiple parties to leverage their own cloud-based computational resources (capable of supporting MapReduce [27] operations) in concert with multi-party computation (MPC) to execute statistical analysis algorithms that have privacy-preserving properties. Our architecture allows a data analyst unfamiliar with MPC to: (1) author an analysis algorithm that is agnostic with regard to data privacy policies, (2) to use an automated process to derive algorithm implementation variants that have different privacy and performance properties, and (3) to compile those implementation variants so that they can be deployed on an infrastructures that allows computations to take place locally within each participant’s MapReduce cluster as well as across all the participants’ clusters using an MPC protocol. We describe implementation details of the architecture, discuss and demonstrate how the formal framework enables the exploration of tradeoffs between the efficiency and privacy properties of an analysis algorithm, and present two example applications that illustrate how such an infrastructure can be utilized in practice.This work was supported in part by NSF Grants: #1430145, #1414119, #1347522, and #1012798
    • …
    corecore