5,978 research outputs found
Map Matching with Simplicity Constraints
We study a map matching problem, the task of finding in an embedded graph a
path that has low distance to a given curve in R^2. The Fr\'echet distance is a
common measure for this problem. Efficient methods exist to compute the best
path according to this measure. However, these methods cannot guarantee that
the result is simple (i.e. it does not intersect itself) even if the given
curve is simple. In this paper, we prove that it is in fact NP-complete to
determine the existence a simple cycle in a planar straight-line embedding of a
graph that has at most a given Fr\'echet distance to a given simple closed
curve. We also consider the implications of our proof on some variants of the
problem
A Force-Directed Approach for Offline GPS Trajectory Map Matching
We present a novel algorithm to match GPS trajectories onto maps offline (in
batch mode) using techniques borrowed from the field of force-directed graph
drawing. We consider a simulated physical system where each GPS trajectory is
attracted or repelled by the underlying road network via electrical-like
forces. We let the system evolve under the action of these physical forces such
that individual trajectories are attracted towards candidate roads to obtain a
map matching path. Our approach has several advantages compared to traditional,
routing-based, algorithms for map matching, including the ability to account
for noise and to avoid large detours due to outliers in the data whilst taking
into account the underlying topological restrictions (such as one-way roads).
Our empirical evaluation using real GPS traces shows that our method produces
better map matching results compared to alternative offline map matching
algorithms on average, especially for routes in dense, urban areas.Comment: 10 pages, 12 figures, accepted version of article submitted to ACM
SIGSPATIAL 2018, Seattle, US
Multi-track Map Matching
We study algorithms for matching user tracks, consisting of time-ordered
location points, to paths in the road network. Previous work has focused on the
scenario where the location data is linearly ordered and consists of fairly
dense and regular samples. In this work, we consider the \emph{multi-track map
matching}, where the location data comes from different trips on the same
route, each with very sparse samples. This captures the realistic scenario
where users repeatedly travel on regular routes and samples are sparsely
collected, either due to energy consumption constraints or because samples are
only collected when the user actively uses a service. In the multi-track
problem, the total set of combined locations is only partially ordered, rather
than globally ordered as required by previous map-matching algorithms. We
propose two methods, the iterative projection scheme and the graph Laplacian
scheme, to solve the multi-track problem by using a single-track map-matching
subroutine. We also propose a boosting technique which may be applied to either
approach to improve the accuracy of the estimated paths. In addition, in order
to deal with variable sampling rates in single-track map matching, we propose a
method based on a particular regularized cost function that can be adapted for
different sampling rates and measurement errors. We evaluate the effectiveness
of our techniques for reconstructing tracks under several different
configurations of sampling error and sampling rate.Comment: 11 pages, 8 figures, short version appears in 20th International
Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL GIS
2012). Extended Abstract in Proceedings of the 10th international conference
on Mobile systems, applications, and services (MobiSys 2012
Performance of a New Enhanced Topological Decision-Rule Map-Matching Algorithm for Transportation Applications
Indexación: Web of Science; ScieloMap-matching problems arise in numerous transportation-related applications when spatial data is collected using inaccurate GPS technology and integrated with a flawed digital roadway map in a GIS environment. This paper presents a new enhanced post-processing topological decision-rule map-matching algorithm in order to address relevant special cases that occur in the spatial mismatch resolution. The proposed map-matching algorithm includes simple algorithmic improvements: dynamic buffer that varies its size to snap GPS data points to at least one roadway centerline; a comparison between vehicle heading measurements and associated roadway centerline direction; and a new design of the sequence of steps in the algorithm architecture. The original and new versions of the algorithm were tested on different spatial data qualities collected in Canada and United States. Although both versions satisfactorily resolve complex spatial ambiguities, the comparative and statistical analysis indicates that the new algorithm with the simple algorithmic improvements outperformed the original version of the map-matching algorithm.El problema de la ambigüedad espacial ocurre en varias aplicaciones relacionadas con transporte, específicamente cuando existe inexactitud en los datos espaciales capturados con tecnología GPS o cuando son integrados con un mapa digital que posee errores en un ambiente SIG. Este artículo presenta un algoritmo nuevo y mejorado basado en reglas de decisión que es capaz de resolver casos especiales relevantes en modo post-proceso. El algoritmo propuesto incluye las siguientes mejoras algorítmicas: un área de búsqueda dinámica que varía su tamaño para asociar puntos GPS a al menos un eje de calzada, una comparación entre el rumbo del vehículo y la dirección del eje de calzada asignada, y un nuevo diseño de la secuencia de pasos del algoritmo. Tanto el algoritmo original como el propuesto fueron examinados con datos espaciales de diferentes calidades capturados en Canadá y Estados Unidos. Aunque ambas versiones resuelven satisfactoriamente el problema de ambigüedad espacial, el análisis comparativo y estadístico indica que la nueva versión del algoritmo con las mejoras algorítmicas entrega resultados superiores a la versión original del algoritmo.http://ref.scielo.org/9mt55
Linking Smartphone GPS Data with Transport Planning: A Framework of Data Aggregation and Anonymization for a Journey Planning App
With the proliferation of GPS tracking data provided by smartphone apps, it is desirable to develop a data processing and anonymizing framework to transform raw GPS data into a suitable format for transport planning models. The paper aims to describe the effort to address such issues by map matching and aggregating the GPS information derived from a journey planning app. The effectiveness and flexibility of such a framework is demonstrated by an analysis of speeding and waiting time patterns in England and Wales by tracking 120 users for a year
Investigating the mobility habits of electric bike owners through GPS data
This paper investigates the mobility habits of electric bike owners as well as their preferred routes. Through a GPS tracking campaign conducted in the city of Ghent (Belgium) we analyze the mobility habits (travel distance, time spent, speed) during the week of some e-bike users. Moreover, we propose the results of our map matching, based on the Hausdorff criterion, and preliminary results on the route choice of our sample. We strongly believe that investigating the behavior of electric bikes’ owners can help us in better understanding how to incentivize the use of this mode of transport. First results show that the trips with a higher travel distance are performed during the working days. It could be easily correlated with the daily commuting trips (home-work). Moreover, the results of our map-matching highlight how 61% of the trips are performed using the shortest path
- …
