12 research outputs found

    Map++: A Crowd-sensing System for Automatic Map Semantics Identification

    Full text link
    Digital maps have become a part of our daily life with a number of commercial and free map services. These services have still a huge potential for enhancement with rich semantic information to support a large class of mapping applications. In this paper, we present Map++, a system that leverages standard cell-phone sensors in a crowdsensing approach to automatically enrich digital maps with different road semantics like tunnels, bumps, bridges, footbridges, crosswalks, road capacity, among others. Our analysis shows that cell-phones sensors with humans in vehicles or walking get affected by the different road features, which can be mined to extend the features of both free and commercial mapping services. We present the design and implementation of Map++ and evaluate it in a large city. Our evaluation shows that we can detect the different semantics accurately with at most 3% false positive rate and 6% false negative rate for both vehicle and pedestrian-based features. Moreover, we show that Map++ has a small energy footprint on the cell-phones, highlighting its promise as a ubiquitous digital maps enriching service.Comment: Published in the Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (IEEE SECON 2014

    A Robust Zero-Calibration RF-based Localization System for Realistic Environments

    Full text link
    Due to the noisy indoor radio propagation channel, Radio Frequency (RF)-based location determination systems usually require a tedious calibration phase to construct an RF fingerprint of the area of interest. This fingerprint varies with the used mobile device, changes of the transmit power of smart access points (APs), and dynamic changes in the environment; requiring re-calibration of the area of interest; which reduces the technology ease of use. In this paper, we present IncVoronoi: a novel system that can provide zero-calibration accurate RF-based indoor localization that works in realistic environments. The basic idea is that the relative relation between the received signal strength from two APs at a certain location reflects the relative distance from this location to the respective APs. Building on this, IncVoronoi incrementally reduces the user ambiguity region based on refining the Voronoi tessellation of the area of interest. IncVoronoi also includes a number of modules to efficiently run in realtime as well as to handle practical deployment issues including the noisy wireless environment, obstacles in the environment, heterogeneous devices hardware, and smart APs. We have deployed IncVoronoi on different Android phones using the iBeacons technology in a university campus. Evaluation of IncVoronoi with a side-by-side comparison with traditional fingerprinting techniques shows that it can achieve a consistent median accuracy of 2.8m under different scenarios with a low beacon density of one beacon every 44m2. Compared to fingerprinting techniques, whose accuracy degrades by at least 156%, this accuracy comes with no training overhead and is robust to the different user devices, different transmit powers, and over temporal changes in the environment. This highlights the promise of IncVoronoi as a next generation indoor localization system.Comment: 9 pages, 13 figures, published in SECON 201

    It's the Human that Matters: Accurate User Orientation Estimation for Mobile Computing Applications

    Full text link
    Ubiquity of Internet-connected and sensor-equipped portable devices sparked a new set of mobile computing applications that leverage the proliferating sensing capabilities of smart-phones. For many of these applications, accurate estimation of the user heading, as compared to the phone heading, is of paramount importance. This is of special importance for many crowd-sensing applications, where the phone can be carried in arbitrary positions and orientations relative to the user body. Current state-of-the-art focus mainly on estimating the phone orientation, require the phone to be placed in a particular position, require user intervention, and/or do not work accurately indoors; which limits their ubiquitous usability in different applications. In this paper we present Humaine, a novel system to reliably and accurately estimate the user orientation relative to the Earth coordinate system. Humaine requires no prior-configuration nor user intervention and works accurately indoors and outdoors for arbitrary cell phone positions and orientations relative to the user body. The system applies statistical analysis techniques to the inertial sensors widely available on today's cell phones to estimate both the phone and user orientation. Implementation of the system on different Android devices with 170 experiments performed at different indoor and outdoor testbeds shows that Humaine significantly outperforms the state-of-the-art in diverse scenarios, achieving a median accuracy of 15∘15^\circ averaged over a wide variety of phone positions. This is 558%558\% better than the-state-of-the-art. The accuracy is bounded by the error in the inertial sensors readings and can be enhanced with more accurate sensors and sensor fusion.Comment: Accepted for publication in the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (Mobiquitous 2014

    COLTRANE: ConvolutiOnaL TRAjectory NEtwork for Deep Map Inference

    Full text link
    The process of automatic generation of a road map from GPS trajectories, called map inference, remains a challenging task to perform on a geospatial data from a variety of domains as the majority of existing studies focus on road maps in cities. Inherently, existing algorithms are not guaranteed to work on unusual geospatial sites, such as an airport tarmac, pedestrianized paths and shortcuts, or animal migration routes, etc. Moreover, deep learning has not been explored well enough for such tasks. This paper introduces COLTRANE, ConvolutiOnaL TRAjectory NEtwork, a novel deep map inference framework which operates on GPS trajectories collected in various environments. This framework includes an Iterated Trajectory Mean Shift (ITMS) module to localize road centerlines, which copes with noisy GPS data points. Convolutional Neural Network trained on our novel trajectory descriptor is then introduced into our framework to detect and accurately classify junctions for refinement of the road maps. COLTRANE yields up to 37% improvement in F1 scores over existing methods on two distinct real-world datasets: city roads and airport tarmac.Comment: BuildSys 201

    A Survey on Smartphone-Based Crowdsensing Solutions

    Get PDF
    © 2016 Willian Zamora et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.[EN] In recent years, the widespread adoption of mobile phones, combined with the ever-increasing number of sensors that smartphones are equipped with, greatly simplified the generalized adoption of crowdsensing solutions by reducing hardware requirements and costs to a minimum. These factors have led to an outstanding growth of crowdsensing proposals from both academia and industry. In this paper, we provide a survey of smartphone-based crowdsensing solutions that have emerged in the past few years, focusing on 64 works published in top-ranked journals and conferences. To properly analyze these previous works, we first define a reference framework based on how we classify the different proposals under study. The results of our survey evidence that there is still much heterogeneity in terms of technologies adopted and deployment approaches, although modular designs at both client and server elements seem to be dominant. Also, the preferred client platform is Android, while server platforms are typically web-based, and client-server communications mostly rely on XML or JSON over HTTP. The main detected pitfall concerns the performance evaluation of the different proposals, which typically fail to make a scalability analysis despite being critical issue when targeting very large communities of users.This work was partially supported by the Ministerio de Economia y Competitividad, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R, the "Universidad Laica Eloy Alfaro de Manabi-ULEAM," and the "Programa de Becas SENESCYT de la Republica del Ecuador."Zamora-Mero, WJ.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2016). A Survey on Smartphone-Based Crowdsensing Solutions. Mobile Information Systems. 2016:1-26. https://doi.org/10.1155/2016/9681842S126201

    Seamless Interactions Between Humans and Mobility Systems

    Full text link
    As mobility systems, including vehicles and roadside infrastructure, enter a period of rapid and profound change, it is important to enhance interactions between people and mobility systems. Seamless human—mobility system interactions can promote widespread deployment of engaging applications, which are crucial for driving safety and efficiency. The ever-increasing penetration rate of ubiquitous computing devices, such as smartphones and wearable devices, can facilitate realization of this goal. Although researchers and developers have attempted to adapt ubiquitous sensors for mobility applications (e.g., navigation apps), these solutions often suffer from limited usability and can be risk-prone. The root causes of these limitations include the low sensing modality and limited computational power available in ubiquitous computing devices. We address these challenges by developing and demonstrating that novel sensing techniques and machine learning can be applied to extract essential, safety-critical information from drivers natural driving behavior, even actions as subtle as steering maneuvers (e.g., left-/righthand turns and lane changes). We first show how ubiquitous sensors can be used to detect steering maneuvers regardless of disturbances to sensing devices. Next, by focusing on turning maneuvers, we characterize drivers driving patterns using a quantifiable metric. Then, we demonstrate how microscopic analyses of crowdsourced ubiquitous sensory data can be used to infer critical macroscopic contextual information, such as risks present at road intersections. Finally, we use ubiquitous sensors to profile a driver’s behavioral patterns on a large scale; such sensors are found to be essential to the analysis and improvement of drivers driving behavior.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163127/1/chendy_1.pd
    corecore