3,949 research outputs found

    Zero-Shot Learning by Convex Combination of Semantic Embeddings

    Full text link
    Several recent publications have proposed methods for mapping images into continuous semantic embedding spaces. In some cases the embedding space is trained jointly with the image transformation. In other cases the semantic embedding space is established by an independent natural language processing task, and then the image transformation into that space is learned in a second stage. Proponents of these image embedding systems have stressed their advantages over the traditional \nway{} classification framing of image understanding, particularly in terms of the promise for zero-shot learning -- the ability to correctly annotate images of previously unseen object categories. In this paper, we propose a simple method for constructing an image embedding system from any existing \nway{} image classifier and a semantic word embedding model, which contains the \n class labels in its vocabulary. Our method maps images into the semantic embedding space via convex combination of the class label embedding vectors, and requires no additional training. We show that this simple and direct method confers many of the advantages associated with more complex image embedding schemes, and indeed outperforms state of the art methods on the ImageNet zero-shot learning task

    ProTeCt: Prompt Tuning for Hierarchical Consistency

    Full text link
    Large visual-language models, like CLIP, learn generalized representations and have shown promising zero-shot performance. Few-shot adaptation methods, based on prompt tuning, have also been shown to further improve performance on downstream datasets. However, these models are not hierarchically consistent. Frequently, they infer incorrect labels at coarser taxonomic class levels, even when the inference at the leaf level (original class labels) is correct. This is problematic, given their support for open set classification and, in particular, open-grained classification, where practitioners define label sets at various levels of granularity. To address this problem, we propose a prompt tuning technique to calibrate the hierarchical consistency of model predictions. A set of metrics of hierarchical consistency, the Hierarchical Consistent Accuracy (HCA) and the Mean Treecut Accuracy (MTA), are first proposed to benchmark model performance in the open-granularity setting. A prompt tuning technique, denoted as Prompt Tuning for Hierarchical Consistency (ProTeCt), is then proposed to calibrate classification across all possible label set granularities. Results show that ProTeCt can be combined with existing prompt tuning methods to significantly improve open-granularity classification performance without degradation of the original classification performance at the leaf level

    Zero-Shot Learning -- A Comprehensive Evaluation of the Good, the Bad and the Ugly

    Full text link
    Due to the importance of zero-shot learning, i.e. classifying images where there is a lack of labeled training data, the number of proposed approaches has recently increased steadily. We argue that it is time to take a step back and to analyze the status quo of the area. The purpose of this paper is three-fold. First, given the fact that there is no agreed upon zero-shot learning benchmark, we first define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets used for this task. This is an important contribution as published results are often not comparable and sometimes even flawed due to, e.g. pre-training on zero-shot test classes. Moreover, we propose a new zero-shot learning dataset, the Animals with Attributes 2 (AWA2) dataset which we make publicly available both in terms of image features and the images themselves. Second, we compare and analyze a significant number of the state-of-the-art methods in depth, both in the classic zero-shot setting but also in the more realistic generalized zero-shot setting. Finally, we discuss in detail the limitations of the current status of the area which can be taken as a basis for advancing it.Comment: Accepted by TPAMI in July, 2018. We introduce Proposed Split Version 2.0 (Please download it from our project webpage). arXiv admin note: substantial text overlap with arXiv:1703.0439

    Automatic Discovery, Association Estimation and Learning of Semantic Attributes for a Thousand Categories

    Full text link
    Attribute-based recognition models, due to their impressive performance and their ability to generalize well on novel categories, have been widely adopted for many computer vision applications. However, usually both the attribute vocabulary and the class-attribute associations have to be provided manually by domain experts or large number of annotators. This is very costly and not necessarily optimal regarding recognition performance, and most importantly, it limits the applicability of attribute-based models to large scale data sets. To tackle this problem, we propose an end-to-end unsupervised attribute learning approach. We utilize online text corpora to automatically discover a salient and discriminative vocabulary that correlates well with the human concept of semantic attributes. Moreover, we propose a deep convolutional model to optimize class-attribute associations with a linguistic prior that accounts for noise and missing data in text. In a thorough evaluation on ImageNet, we demonstrate that our model is able to efficiently discover and learn semantic attributes at a large scale. Furthermore, we demonstrate that our model outperforms the state-of-the-art in zero-shot learning on three data sets: ImageNet, Animals with Attributes and aPascal/aYahoo. Finally, we enable attribute-based learning on ImageNet and will share the attributes and associations for future research.Comment: Accepted as a conference paper at CVPR 201

    Fine-grained Image Classification by Exploring Bipartite-Graph Labels

    Full text link
    Given a food image, can a fine-grained object recognition engine tell "which restaurant which dish" the food belongs to? Such ultra-fine grained image recognition is the key for many applications like search by images, but it is very challenging because it needs to discern subtle difference between classes while dealing with the scarcity of training data. Fortunately, the ultra-fine granularity naturally brings rich relationships among object classes. This paper proposes a novel approach to exploit the rich relationships through bipartite-graph labels (BGL). We show how to model BGL in an overall convolutional neural networks and the resulting system can be optimized through back-propagation. We also show that it is computationally efficient in inference thanks to the bipartite structure. To facilitate the study, we construct a new food benchmark dataset, which consists of 37,885 food images collected from 6 restaurants and totally 975 menus. Experimental results on this new food and three other datasets demonstrates BGL advances previous works in fine-grained object recognition. An online demo is available at http://www.f-zhou.com/fg_demo/
    • …
    corecore