6,441 research outputs found

    Multiclass Semi-Supervised Learning on Graphs using Ginzburg-Landau Functional Minimization

    Full text link
    We present a graph-based variational algorithm for classification of high-dimensional data, generalizing the binary diffuse interface model to the case of multiple classes. Motivated by total variation techniques, the method involves minimizing an energy functional made up of three terms. The first two terms promote a stepwise continuous classification function with sharp transitions between classes, while preserving symmetry among the class labels. The third term is a data fidelity term, allowing us to incorporate prior information into the model in a semi-supervised framework. The performance of the algorithm on synthetic data, as well as on the COIL and MNIST benchmark datasets, is competitive with state-of-the-art graph-based multiclass segmentation methods.Comment: 16 pages, to appear in Springer's Lecture Notes in Computer Science volume "Pattern Recognition Applications and Methods 2013", part of series on Advances in Intelligent and Soft Computin

    Parametric Regression on the Grassmannian

    Get PDF
    We address the problem of fitting parametric curves on the Grassmann manifold for the purpose of intrinsic parametric regression. As customary in the literature, we start from the energy minimization formulation of linear least-squares in Euclidean spaces and generalize this concept to general nonflat Riemannian manifolds, following an optimal-control point of view. We then specialize this idea to the Grassmann manifold and demonstrate that it yields a simple, extensible and easy-to-implement solution to the parametric regression problem. In fact, it allows us to extend the basic geodesic model to (1) a time-warped variant and (2) cubic splines. We demonstrate the utility of the proposed solution on different vision problems, such as shape regression as a function of age, traffic-speed estimation and crowd-counting from surveillance video clips. Most notably, these problems can be conveniently solved within the same framework without any specifically-tailored steps along the processing pipeline.Comment: 14 pages, 11 figure

    Low-Rank Matrices on Graphs: Generalized Recovery & Applications

    Get PDF
    Many real world datasets subsume a linear or non-linear low-rank structure in a very low-dimensional space. Unfortunately, one often has very little or no information about the geometry of the space, resulting in a highly under-determined recovery problem. Under certain circumstances, state-of-the-art algorithms provide an exact recovery for linear low-rank structures but at the expense of highly inscalable algorithms which use nuclear norm. However, the case of non-linear structures remains unresolved. We revisit the problem of low-rank recovery from a totally different perspective, involving graphs which encode pairwise similarity between the data samples and features. Surprisingly, our analysis confirms that it is possible to recover many approximate linear and non-linear low-rank structures with recovery guarantees with a set of highly scalable and efficient algorithms. We call such data matrices as \textit{Low-Rank matrices on graphs} and show that many real world datasets satisfy this assumption approximately due to underlying stationarity. Our detailed theoretical and experimental analysis unveils the power of the simple, yet very novel recovery framework \textit{Fast Robust PCA on Graphs

    Improving Sparse Representation-Based Classification Using Local Principal Component Analysis

    Full text link
    Sparse representation-based classification (SRC), proposed by Wright et al., seeks the sparsest decomposition of a test sample over the dictionary of training samples, with classification to the most-contributing class. Because it assumes test samples can be written as linear combinations of their same-class training samples, the success of SRC depends on the size and representativeness of the training set. Our proposed classification algorithm enlarges the training set by using local principal component analysis to approximate the basis vectors of the tangent hyperplane of the class manifold at each training sample. The dictionary in SRC is replaced by a local dictionary that adapts to the test sample and includes training samples and their corresponding tangent basis vectors. We use a synthetic data set and three face databases to demonstrate that this method can achieve higher classification accuracy than SRC in cases of sparse sampling, nonlinear class manifolds, and stringent dimension reduction.Comment: Published in "Computational Intelligence for Pattern Recognition," editors Shyi-Ming Chen and Witold Pedrycz. The original publication is available at http://www.springerlink.co
    • …
    corecore