4,936 research outputs found

    Final report: Workshop on: Integrating electric mobility systems with the grid infrastructure

    Full text link
    EXECUTIVE SUMMARY: This document is a report on the workshop entitled “Integrating Electric Mobility Systems with the Grid Infrastructure” which was held at Boston University on November 6-7 with the sponsorship of the Sloan Foundation. Its objective was to bring together researchers and technical leaders from academia, industry, and government in order to set a short and longterm research agenda regarding the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. The report is a summary of their insights based on workshop presentations and discussions. The list of participants and detailed Workshop program are provided in Appendices 1 and 2. Public and private decisions made in the coming decade will direct profound changes in the way people and goods are moved and the ability of clean energy sources – primarily delivered in the form of electricity – to power these new systems. Decisions need to be made quickly because of rapid advances in technology, and the growing recognition that meeting climate goals requires rapid and dramatic action. The blunt fact is, however, that the pace of innovation, and the range of business models that can be built around these innovations, has grown at a rate that has outstripped our ability to clearly understand the choices that must be made or estimate the consequences of these choices. The group of people assembled for this Workshop are uniquely qualified to understand the options that are opening both in the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. They were asked both to explain what is known about the choices we face and to define the research issues most urgently needed to help public and private decision-makers choose wisely. This report is a summary of their insights based on workshop presentations and discussions. New communication and data analysis tools have profoundly changed the definition of what is technologically possible. Cell phones have put powerful computers, communication devices, and position locators into the pockets and purses of most Americans making it possible for Uber, Lyft and other Transportation Network Companies to deliver on-demand mobility services. But these technologies, as well as technologies for pricing access to congested roads, also open many other possibilities for shared mobility services – both public and private – that could cut costs and travel time by reducing congestion. Options would be greatly expanded if fully autonomous vehicles become available. These new business models would also affect options for charging electric vehicles. It is unclear, however, how to optimize charging (minimizing congestion on the electric grid) without increasing congestion on the roads or creating significant problems for the power system that supports such charging capacity. With so much in flux, many uncertainties cloud our vision of the future. The way new mobility services will reshape the number, length of trips, and the choice of electric vehicle charging systems and constraints on charging, and many other important behavioral issues are critical to this future but remain largely unknown. The challenge at hand is to define plausible future structures of electric grids and mobility systems, and anticipate the direct and indirect impacts of the changes involved. These insights can provide tools essential for effective private ... [TRUNCATED]Workshop funded by the Alfred P. Sloan Foundatio

    Is re-farming the answer to the spectrum shortage conundrum?

    Get PDF
    Radio spectrum has become one of the engines of economic growth. However, rapid technological change, ever increasing demands for new wireless services and the nature of spectrum as a scarce resource necessitate an urgent re-examination of issues such as congestion and interference. This paper argues that the traditional administrative spectrum management approach is unlikely to overcome these issues, thereby resulting in growing technical and economic inefficiencies. As countries review their spectrum policies - a process that is generically referred to as radio spectrum policy reform - to counter these inefficiencies, modifications to the radio frequency allocations and assignments are beginning to be implemented by way of radio spectrum re-farming? This phenomenon forms the subject matter of this paper

    Off-peak truck deliveries at container terminals: the 'Good Night' program in Israel

    Get PDF
    Purpose – Avoiding truck congestion and peaks in landside activity is one of the challenges to container terminal managers. The spreading of truck arrivals at terminals can be facilitated by widening the opening hours of terminals at the landside. Israel’s Ministry of Transport has instituted the “Good Night Program”, involving monetary incentives for importers and exporters who deliver containers to ports at night. Design/methodology/approach – This paper aims to quantitatively examine the market utility resulting from shifting traffic from daytime to nighttime, and analyzes customer considerations regarding nighttime transportation. Findings – The external utility found in the traffic-economics model is quite similar to the economic incentive given to customers. Therefore, a significant increase of the incentive is not feasible. Originality/value – Furthermore, it seems that an incentive method by itself is not effective enough, and does not motivate customers to act and find creative solutions to the obstacles they face. To achieve a considerable change in nighttime transport to Israeli ports, more effective methods should be examined

    Time and Location Aware Mobile Data Pricing

    Full text link
    Mobile users' correlated mobility and data consumption patterns often lead to severe cellular network congestion in peak hours and hot spots. This paper presents an optimal design of time and location aware mobile data pricing, which incentivizes users to smooth traffic and reduce network congestion. We derive the optimal pricing scheme through analyzing a two-stage decision process, where the operator determines the time and location aware prices by minimizing his total cost in Stage I, and each mobile user schedules his mobile traffic by maximizing his payoff (i.e., utility minus payment) in Stage II. We formulate the two-stage decision problem as a bilevel optimization problem, and propose a derivative-free algorithm to solve the problem for any increasing concave user utility functions. We further develop low complexity algorithms for the commonly used logarithmic and linear utility functions. The optimal pricing scheme ensures a win-win situation for the operator and users. Simulations show that the operator can reduce the cost by up to 97.52% in the logarithmic utility case and 98.70% in the linear utility case, and users can increase their payoff by up to 79.69% and 106.10% for the two types of utilities, respectively, comparing with a time and location independent pricing benchmark. Our study suggests that the operator should provide price discounts at less crowded time slots and locations, and the discounts need to be significant when the operator's cost of provisioning excessive traffic is high or users' willingness to delay traffic is low.Comment: This manuscript serves as the online technical report of the article accepted by IEEE Transactions on Mobile Computin

    Managing Shared Access to a Spectrum Commons

    Get PDF
    The open access, unlicensed or spectrum commons approach to managing shared access to RF spectrum offers many attractive benefits, especially when implemented in conjunction with and as a complement to a regime of marketbased, flexible use, tradable licensed spectrum ([Benkler02], [Lehr04], [Werbach03]). However, as a number of critics have pointed out, implementing the unlicensed model poses difficult challenges that have not been well-addressed yet by commons advocates ([Benjam03], [Faulhab05], [Goodman04], [Hazlett01]). A successful spectrum commons will not be unregulated, but it also need not be command & control by another name. This paper seeks to address some of the implementation challenges associated with managing a spectrum commons. We focus on the minimal set of features that we believe a suitable management protocol, etiquette, or framework for a spectrum commons will need to incorporate. This includes: (1) No transmit only devices; (2) Power restrictions; (3) Common channel signaling; (4) Mechanism for handling congestion and allocating resources among users/uses in times of congestion; (5) Mechanism to support enforcement (e.g., established procedures to verify protocol is in conformance); (6) Mechanism to support reversibility of policy; and (7) Protection for privacy and security. We explain why each is necessary, examine their implications for current policy, and suggest ways in which they might be implemented. We present a framework that suggests a set of design principles for the protocols that will govern a successful commons management regime. Our design rules lead us to conclude that the appropriate Protocols for a Commons will need to be more liquid ([Reed05]) than in the past: (1) Marketbased instead of C&C; (2) Decentralized/distributed; and, (3) Adaptive and flexible (Anonymous, distributed, decentralized, and locally responsive)

    Managing the radio spectrum : framework for reform in developing countries

    Get PDF
    Bringing management of the radio spectrum closer to markets is long overdue. The radio spectrum is a major component of the infrastructure that underpins the information society. Spectrum management, however, has not kept up with major changes in technology, business practice, and economic policy that have taken place worldwide during the last two decades. For many years traditional government administration of the spectrum worked reasonably well, but more recently it has led to growing technical and economic inefficiencies as well as obstacles to technological innovation. Two alternative approaches to spectrum management are being tried in several countries, one driven by the market (tradable spectrum rights) and another driven by technology innovation (spectrum commons). This paper discusses the basic features, advantages and limitations, scope of application, and requirements for implementation of these three approaches. The paper then discusses how these approaches can be made to work under conditions that typically prevail in developing countries, including weak rule of law, limited markets, and constrained fiscal space. Although spectrum reform strategies for individual countries must be developed case by case, several broadly applicable strategic options are outlined. The paper proposes a phased approach to addressing spectrum reform in a country. It ends by discussing aspects of institutional design, managing the transition, and addressing high-level changes such as the transition to digital television, the path to third-generation mobile services, launching of wireless fixed broadband services, and releasing military spectrum. The paper is extensively annotated and referenced.E-Business,Roads&Highways,Telecommunications Infrastructure,Climate Change,ICT Policy and Strategies

    Planning for Density in a Driverless World

    Get PDF
    Automobile-centered, low-density development was the defining feature of population growth in the United States for decades. This development pattern displaced wildlife, destroyed habitat, and contributed to a national loss of biodiversity. It also meant, eventually, that commutes and air quality worsened, a sense of local character was lost in many places, and the negative consequences of sprawl impacted an increasing percentage of the population. Those impacts led to something of a shift in the national attitude toward sprawl. More people than ever are fluent in concepts of “smart growth,” “new urbanism,” and “green building,” and with these tools and others, municipalities across the country are working to redevelop a central core, rethink failing transit systems, and promote pockets of density. Changing technology may disrupt this trend. Self-driving vehicles are expected to be widespread within the next several decades. Those vehicles will likely reduce congestion, air pollution, and deaths, and free up huge amounts of productive time in the car. These benefits may also eliminate much of the conventional motivation and rationale behind sprawl reduction. As the time-cost of driving falls, driverless cars have the potential to incentivize human development of land that, by virtue of its distance from settled metropolitan areas, had been previously untouched. From the broader ecological perspective, each human surge into undeveloped land results in habitat destruction and fragmentation, and additional loss of biological diversity. New automobile technology may therefore usher in better air quality, increased safety, and a significant threat to ecosystem health. Our urban and suburban environments have been molded for centuries to the needs of various forms of transportation. The same result appears likely to occur in response to autonomous vehicles, if proactive steps are not taken to address their likely impacts. Currently, little planning is being done to prepare for driverless technology. Actors at multiple levels, however, have tools at their disposal to help ensure that new technology does not come at the expense of the nation’s remaining natural habitats. This Article advocates for a shift in paradigm from policies that are merely anti-car to those that are pro-density, and provides suggestions for both cities and suburban areas for how harness the positive aspects of driverless cars while trying to stem the negative. Planning for density regardless of technology will help to ensure that, for the world of the future, there is actually a world

    Too Expensive to Meter: The influence of transaction costs in transportation and communication

    Get PDF
    Technology appears to be making fine-scale charging (as in tolls on roads that depend on time of day or even on current and anticipated levels of congestion) increasingly feasible. And such charging appears to be increasingly desirable, as traffic on roads continues to grow, and costs and public opposition limit new construction. Similar incentives towards fine-scale charging also appear to be operating in communications and other areas, such as electricity usage. Standard economic theory supports such measures, and technology is being developed and deployed to implement them. But their spread is not very rapid, and prospects for the future are uncertain. This paper presents a collection of sketches, some from ancient history, some from current developments, that illustrate the costs that charging imposes. Some of those costs are explicit (in terms of the monetary costs to users, and the costs of implementing the charging mechanisms). Others are implicit, such as the time or the mental processing costs of users. These argue that the case for fine-scale charging is not unambiguous, and that in many cases may be inappropriate.transportation, communication, transaction costs, collection costs
    corecore