3,776 research outputs found

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    A trigger-based middleware cache for ORMs

    Get PDF
    ACM/IFIP/USENIX 12th International Middleware Conference, Lisbon, Portugal, December 12-16, 2011. ProceedingsCaching is an important technique in scaling storage for high-traffic web applications. Usually, building caching mechanisms involves significant effort from the application developer to maintain and invalidate data in the cache. In this work we present CacheGenie, a caching middleware which makes it easy for web application developers to use caching mechanisms in their applications. CacheGenie provides high-level caching abstractions for common query patterns in web applications based on Object-RelationalMapping (ORM) frameworks. Using these abstractions, the developer does not have to worry about managing the cache (e.g., insertion and deletion) or maintaining consistency (e.g., invalidation or updates) when writing application code. We design and implement CacheGenie in the popular Django web application framework, with PostgreSQL as the database backend and memcached as the caching layer. To automatically invalidate or update cached data, we use triggers inside the database. CacheGenie requires no modifications to PostgreSQL or memcached. To evaluate our prototype, we port several Pinax web applications to use our caching abstractions. Our results show that it takes little effort for application developers to use CacheGenie, and that CacheGenie improves throughput by 2-2.5× for read-mostly workloads in Pinax.Quanta Computer (Firm

    RDMA mechanisms for columnar data in analytical environments

    Get PDF
    Dissertação de mestrado integrado em Engenharia InformáticaThe amount of data in information systems is growing constantly and, as a consequence, the complexity of analytical processing is greater. There are several storage solutions to persist this information, with different architectures targeting different use cases. For analytical processing, storage solutions with a column-oriented format are particularly relevant due to the convenient placement of the data in persistent storage and the closer mapping to in-memory processing. The access to the database is typically remote and has overhead associated, mainly when it is necessary to obtain the same data multiple times. Thus, it is desirable to have a cache on the processing side and there are solutions for this. The problem with the existing so lutions is the overhead introduced by network latency and memory-copy between logical layers. Remote Direct Memory Access (RDMA) mechanisms have the potential to help min imize this overhead. Furthermore, this type of mechanism is indicated for large amounts of data because zero-copy has more impact as the data volume increases. One of the problems associated with RDMA mechanisms is the complexity of development. This complexity is induced by its different development paradigm when compared to other network commu nication protocols, for example, TCP. Aiming to improve the efficiency of analytical processing, this dissertation presents a dis tributed cache that takes advantage of RDMA mechanisms to improve analytical processing performance. The cache abstracts the intricacies of RDMA mechanisms and is developed as a middleware making it transparent to take advantage of this technology. Moreover, this technique could be used in other contexts where a distributed cache makes sense, such as a set of replicated web servers that access the same database.A quantidade de informação nos sistemas informáticos tem vindo a aumentar e consequentemente, a complexidade do processamento analítico torna-se maior. Existem diversas soluções para o armazenamento de dados com diferentes arquiteturas e indicadas para determinados casos de uso. Num contexto de processamento analítico, uma solução com o modelo de dados colunar e especialmente relevante devido à disposição conveniente dos dados em disco e a sua proximidade com o mapeamento em memória desses mesmos dados. Muitas vezes, o acesso aos dados é feito remotamente e isso traz algum overhead, principalmente quando é necessário aceder aos mesmos dados mais do que uma vez. Posto isto, é vantajoso fazer caching dos dados e já existem soluções para esse efeito. O overhead introduzido pela latência da rede e cópia de buffers entre camadas lógicas é o principal problema das soluções existentes. Os mecanismos de acesso direto à memória remota (RDMA - Remote Direct Memory Access) tem o potencial de melhorar o desempenho neste cenário. Para além disso, este tipo de tecnologia faz sentido em sistemas com grandes quantidades de dados, nos quais o acesso direto pode ter um impacto ainda maior por ser zero-copy. Um dos problemas associados com mecanismos RDMA é a complexidade de desenvolvimento. Esta complexidade é causada pelo paradigma de desenvolvimento completamente diferente de outros protocolos de comunicação, como por exemplo, TCP. Tendo em vista melhorar a eficiência do processamento analítico, esta dissertação propõe uma solução de cache distribuída que tira partido de mecanismos de acesso direto a memoria remota (RDMA). A cache abstrai as particularidades dos mecanismos RDMA e é disponibilizada como middleware, tornando a utilização desta tecnologia completamente transparente. Esta solução visa os sistemas de processamento analítico, mas poderá ser utilizada noutros contextos em que uma cache distribuída faça sentido, como por exemplo num conjunto de servidores web replicados que acedem a mesma base de dados
    corecore