32 research outputs found

    How to Perform Reproducible Experiments in the ELLIOT Recommendation Framework: Data Processing, Model Selection, and Performance Evaluation

    Full text link
    Recommender Systems have shown to be an efective way to alleviate the over-choice problem and provide accurate and tailored recommendations. However, the impressive number of proposed recommendation algorithms, splitting strategies, evaluation protocols, metrics, and tasks, has made rigorous experimental evaluation particularly challenging. ELLIOT is a comprehensive recommendation framework that aims to run and reproduce an entire experimental pipeline by processing a simple confguration fle. The framework loads, flters, and splits the data considering a vast set of strategies. Then, it optimizes hyperparameters for several recommendation algorithms, selects the best models, compares them with the baselines, computes metrics spanning from accuracy to beyond-accuracy, bias, and fairness, and conducts statistical analysis. The aim is to provide researchers a tool to ease all the experimental evaluation phases (and make them reproducible), from data reading to results collection. ELLIOT is freely available on GitHub at https://github.com/sisinflab/ellio

    Incorporating System-Level Objectives into Recommender Systems

    Full text link
    One of the most essential parts of any recommender system is personalization-- how acceptable the recommendations are from the user's perspective. However, in many real-world applications, there are other stakeholders whose needs and interests should be taken into account. In this work, we define the problem of multistakeholder recommendation and we focus on finding algorithms for a special case where the recommender system itself is also a stakeholder. In addition, we will explore the idea of incremental incorporation of system-level objectives into recommender systems over time to tackle the existing problems in the optimization techniques which only look for optimizing the individual users' lists.Comment: arXiv admin note: text overlap with arXiv:1901.0755

    Modeling and Counteracting Exposure Bias in Recommender Systems

    Get PDF
    What we discover and see online, and consequently our opinions and decisions, are becoming increasingly affected by automated machine learned predictions. Similarly, the predictive accuracy of learning machines heavily depends on the feedback data that we provide them. This mutual influence can lead to closed-loop interactions that may cause unknown biases which can be exacerbated after several iterations of machine learning predictions and user feedback. Machine-caused biases risk leading to undesirable social effects ranging from polarization to unfairness and filter bubbles. In this paper, we study the bias inherent in widely used recommendation strategies such as matrix factorization. Then we model the exposure that is borne from the interaction between the user and the recommender system and propose new debiasing strategies for these systems. Finally, we try to mitigate the recommendation system bias by engineering solutions for several state of the art recommender system models. Our results show that recommender systems are biased and depend on the prior exposure of the user. We also show that the studied bias iteratively decreases diversity in the output recommendations. Our debiasing method demonstrates the need for alternative recommendation strategies that take into account the exposure process in order to reduce bias. Our research findings show the importance of understanding the nature of and dealing with bias in machine learning models such as recommender systems that interact directly with humans, and are thus causing an increasing influence on human discovery and decision makingComment: 9 figures and one table. The paper has 5 page
    corecore