3 research outputs found

    Management of «Systematic Innovation»: A kind of quest for the Holy Grail!

    Get PDF
    In this paper, authors propose a contribution for improving the open innovation processes. It shows the necessity to get an efficient methodology for open innovation in order to build a computer aided tool for inventive design in Process Systems Engineering (PSE). The proposed methodology will be evocated to be fully used in the context of the “revolutionary” concepts around the so-called factory for the future, also called integrated digital factory, innovative factory… As a result the main contribution of this paper is to propose a software prototype for an Open Computer Aided Innovation 2.0. By definition this open innovation relies on collaboration. This collaboration should enable a community, with a very broad spectrum of skills, to share data, information, knowledge and ideas. As a consequence, a first sub objective is to create a methodological framework that takes advantages of collaboration and collective intelligence (with its capacity to join intelligence and knowledge). Furthermore, the raise of the digital company and more particularly the breakthroughs in information technologies is a powerful enabler to extend and improve the potential of collective intelligence. The second sub objective is to propose a problem resolution process to impel creativity of expert but also to develop, validate and select innovative solutions. After dealing with the importance of Process Innovation and Problem solving investigation in PSE, the proposed approach originally based on an extension of the TRIZ theory (Russian acronym for Theory of Inventive Problem Solving), has been improved by using approach such as case-based reasoning, in order to tackle and revisit problems encountered in the PSE. A case study on biomass is used to illustrate the capabilities of the methodology and the tool

    A taxonomy of critical factors towards Sustainable Operations and Supply Chain Management 4.0 in developing countries– A systematic review and fuzzy group decision-making

    Get PDF
    Supply chain disruptions, intensified by black swan events such as the COVID-19 pandemic and the Russia-Ukraine war, have increased the interest in resilient supply chains, which can be achieved by adopting sustainable Industry 4.0 (I4.0) practices. However, the critical success factors (CSFs) for sustainable I4.0 in operations and supply chain management (S-OSCM4.0) are unclear, and there is a lack of a holistic and empirically validated taxonomy of CSFs from multiple stakeholders' perspectives to guide organizations in this transition. Moreover, developing countries face specific challenges that require prioritizing the proper set of CSFs for sustainable digitalization. Therefore, this paper aims to develop a CSFs-based taxonomy for S-OSCM4.0 to help organizations stay current in I4.0 adoption and integrate sustainability in OSCM. We first conducted a systematic literature review (SLR) of 131 papers using bibliometric and content analyses and synthesized the theoretical findings into an alpha taxonomy of CSFs following an inductive approach. Then, we employed a Delphi survey technique combining fuzzy logic to solicit experts' perceptions from a developing country to analyze and validate the taxonomy and determine the most pertinent CSFs, resulting in a beta taxonomy of CSFs for S-OSCM4.0. The developed taxonomy represents a pioneering managerial artefact that can guide sustainable development through an inclusive digital transformation with less environmental impact, contributing to decision-making in S-OSCM4.0, especially for operations in developing countries
    corecore