41,568 research outputs found
Author Retains Full Rights
Software and systems complexity can have a profound impact on information security. Such complexity is not only imposed by the imperative technical challenges of monitored heterogeneous and dynamic (IP and VLAN assignments) network infrastructures, but also through the advances in exploits and malware distribution mechanisms driven by the underground economics. In addition, operational business constraints (disruptions and consequences, manpower, and end-user satisfaction), increase the complexity of the problem domain... Copyright SANS Institut
Impact Analysis of Malware Based on Call Network API with Heuristic Detection Method
Malware is a program that has a negative influence on computer systems that don\u27t have user permissions. The purpose of making malware by hackers is to get profits in an illegal way. Therefore, we need a malware analysis. Malware analysis aims to determine the specifics of malware so that security can be built to protect computer devices. One method for analyzing malware is heuristic detection. Heuristic detection is an analytical method that allows finding new types of malware in a file or application. Many malwares are made to attack through the internet because of technological advancements. Based on these conditions, the malware analysis is carried out using the API call network with the heuristic detection method. This aims to identify the behavior of malware that attacks the network. The results of the analysis carried out are that most malware is spyware, which is lurking user activity and retrieving user data without the user\u27s knowledge. In addition, there is also malware that is adware, which displays advertisements through pop-up windows on computer devices that interfaces with user activity. So that with these results, it can also be identified actions that can be taken by the user to protect his computer device, such as by installing antivirus or antimalware, not downloading unauthorized applications and not accessing unsafe websites.
 
Malware Classification based on Call Graph Clustering
Each day, anti-virus companies receive tens of thousands samples of
potentially harmful executables. Many of the malicious samples are variations
of previously encountered malware, created by their authors to evade
pattern-based detection. Dealing with these large amounts of data requires
robust, automatic detection approaches. This paper studies malware
classification based on call graph clustering. By representing malware samples
as call graphs, it is possible to abstract certain variations away, and enable
the detection of structural similarities between samples. The ability to
cluster similar samples together will make more generic detection techniques
possible, thereby targeting the commonalities of the samples within a cluster.
To compare call graphs mutually, we compute pairwise graph similarity scores
via graph matchings which approximately minimize the graph edit distance. Next,
to facilitate the discovery of similar malware samples, we employ several
clustering algorithms, including k-medoids and DBSCAN. Clustering experiments
are conducted on a collection of real malware samples, and the results are
evaluated against manual classifications provided by human malware analysts.
Experiments show that it is indeed possible to accurately detect malware
families via call graph clustering. We anticipate that in the future, call
graphs can be used to analyse the emergence of new malware families, and
ultimately to automate implementation of generic detection schemes.Comment: This research has been supported by TEKES - the Finnish Funding
Agency for Technology and Innovation as part of its ICT SHOK Future Internet
research programme, grant 40212/0
- …
