
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

An Early Malware Detection, Correlation, and
Incident Response System with Case Studies
Software and systems complexity can have a profound impact on information security. Such complexity is not
only imposed by the imperative technical challenges of monitored heterogeneous and dynamic (IP and VLAN
assignments) network infrastructures, but also through the advances in exploits and malware distribution
mechanisms driven by the underground economics. In addition, operational business constraints (disruptions and
consequences, manpower, and end-user satisfaction), increase the complexity of the problem domain...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/579

!!
[VERSION!1.0!January!2014]!

!
! !

An Early Malware Detection, Correlation, and
Incident Response System with Case Studies

GIAC (GCIA) Gold Certification

Author:!Yaser!Mansour,!ymansour@outlook.com!
Advisor:!Angel!AlonsoIParrizas!

Accepted:!TBD!!
!

Abstract(
Software)and)systems)complexity)can)have)a)profound)impact)on)information)security.)Such)
complexity)is)not)only)imposed)by)the)imperative)technical)challenges)of)monitored)
heterogeneous)and)dynamic)(IP)and)VLAN)assignments))network)infrastructures,)but)also)
through)the)advances)in)exploits)and)malware)distribution)mechanisms)driven)by)the)
underground)economics.))In)addition,)operational)business)constraints)(disruptions)and)
consequences,)manpower,)and)endEuser)satisfaction),)increase)the)complexity)of)the)problem)
domain)that)security)analysts)must)adequately)operate)within.)This)is)particularly)evident)
when)implementing)effective)response)measures)to)malware)infections)in)a)timely)manner,)
minimizing)the)risk)to)business.)A)simple)question)becomes)particularly)valid)under)such)
complex)environments;)what)appropriate)response)actions)must)be)met)to)appropriately)
eradicate)malware)infections)while)maintaining)high)operational)and)low)risk)profile?)This)
need)stems)from)the)absence)of)predefined)and)preEcorrelated)knowledge)of)the)environment)
and)malware)behaviors.)Without)such)knowledge,)isolating,)analyzing,)and)responding)to)
incidents)at)the)very)same)time)of)the)infection)become)increasingly)difficult.)Specially,)when)
the)incident)involves)aggressive)malware)specimens)exhibiting)behaviors)such)as)network)
propagation,)acting)as)a)spambot,)or)seeking)data)exfiltration.)In)this)case,)it)is)critical)to)
respond)to)the)incident)before)serious)consequences)to)the)business)occur.)
The)faster)the)compromise)is)detected)and)responded)to,)the)more)it)will)be)controlled)and)the)
less)impact)it)will)have.)For)this)purpose,)a)methodological)framework)to)respond)to)malware)
incidents)is)proposed.)At)its)core,)the)framework)focuses)on)minimizing)the)DetectionEToE
Response)(DTR))process)and)time)frames.)The)foundations)upon)which)the)framework)is)built)
consist)of)preEcorrelated)contextual)knowledge)about)the)monitored)network,)and)a)preEbuilt)
malware)analysis)knowledgebase.)This)allows)the)framework)to)systematically)and)
dynamically)automate)network)actions)to)isolate)infected)hosts)as)early)as)detection.)At)the)
same)time,)the)collected)multidimensional)knowledge)is)presented)to)the)analyst)to)aid)during)
the)investigation)and)response)phases.)Ultimately,)the)early)automation)of)response)actions,)
and)reduced)response)time)frames)preserve)the)continuity)of)operations,)as)well)as)endEusers)
relationship)fidelity.))To)demonstrate)the)efficacy)of)such)framework,)two)case)studies)are)
presented)to)help)evaluate)the)proposed)framework)in)responding)to)malware)incidents.!

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 2
!

Yaser!Mansour,!ymansour@outlook.com! ! !

1. Complexity and Information Security
“The complexity of software is an essential property, not an accidental one”

(Brooks, 1987). The adopted software architecture and coding paradigms directly affect

software internal and external quality attributes, specifically complexity (Mansour &

Mustafa, 2011). However, complexity is not a desired system attribute. As (Schneier,

2000) notes, “The future of digital systems is complexity, and complexity is the worst

enemy of security”. Complexity in this paper not only refers to the inherent complexity of

software and the interactions among discrete systems (Booch, 1994), but also delves into

the technical and operational challenges imposed by the monitored network infrastructure

and business constraints. The former challenges include the heterogeneous and dynamic

nature of a network infrastructure. The latter challenges involve the consequences on

business due to malware (in this context, malware refers to any type of malicious code

designed to damage or otherwise perform unintended actions on behalf of a computer

system user, such as Trojans, worms, viruses, backdoors, etc.) infections, lack of

manpower and expertise to respond to infected hosts and the end-user perspective. Both

types of challenges require the analyst to adequately operate while maintaining credible

incident analysis and response. Finally, the ability to technically respond to malware

infections before they severely impact business operations is a key.

Heterogeneous environments necessitate the deployment and support of various

operating systems (OS’s) as business requires. This expands the problem domain for the

analyst as different OS’s will be prone to different types of vulnerabilities and may be

targeted with different malware infections. Hence, requiring different response

techniques. Dynamic and role-based IP address and VLAN assignments raise the level of

complexity for the analyst. An infected host must be accurately identified, tracked, and

isolated if necessary within appropriate time frames prior to changes caused by the

dynamic infrastructure.

Without predetermined and readily available knowledge about the environment

and infections behaviors and mitigations, it becomes increasingly difficult for the analyst

to properly respond to infected hosts in a timely manner. In addition, the absence of

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 3
!

Yaser!Mansour,!ymansour@outlook.com! ! !

automated response actions can be overwhelming, especially when dealing with multiple

incidents at once. This is particularly evident if a host is infected with offensive malware

exhibiting behaviors such as data exfiltration or attacking the internal network. Other

examples include network worms such as Dorkbot (possibly propagating to other hosts)

and Steckt/Neeris IRCbots, or ransomware infections such as Uruasy. In general, these

types of infections not only prevent employees from performing business functions, but

also can leave a negative impact if not responded to in a timely fashion. Dorkbot and

Steckt/Neeris worms are presented as case studies in this paper (see Section 3).

An emergent need stems from the absence of actionable data which allows for a

timely-fashioned, and informed decision making regarding malware compromises. If

such data exists, response actions can be dynamically determined and automated on the

fly at the very same time when a malware infection strikes. Hence, avoiding the

organization the consequences preceding the incident. The work presented in this paper

attempts to assess the proposed custom framework to fulfil this emergent need. Another

aspect of the framework that is equally important is the ability to instantly present the

analyst with the pre-correlated and multidimensional knowledge regarding the malware

incident. This knowledge then serves as the initial response and investigation strategy.

1.1. Malware, an Added Layer of Complexity and its Importance
Historically, malware existed since the 1980’s when Fred Cohen demonstrated the

ability to use malicious code to attack computers (Stamp, 2011). Unfortunately, over time

and due to several factors, the perception of malware infections is not necessarily

regarded as a serious risk (Ross, 2010). One of these factors that is of interest to this

paper is the naming conventions used to identify malware. For example, “The quirky

names given to viruses…exacerbate this tendency to trivialize an infected host as

nuisance rather than a true security threat.” (Ross, 2010). One might assume since

malware naming convention standards such as the Computer Antivirus Research

Organization (CARO)1 and the Common Malware Enumeration (CME)2 Initiative exist,

!!
1!An!example!of!how!CARO!assigns!names!to!malware!is!available!at:!
http://www.microsoft.com/security/portal/mmpc/shared/malwarenaming.aspx!
2!CME!is!no!longer!active!and!all!of!its!efforts!have!been!transferred!to!the!Malware!Attribute!
Enumeration!and!Characterization!(MAEC):!http://maec.mitre.org/!

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 4
!

Yaser!Mansour,!ymansour@outlook.com! ! !

it may be relatively easy to name and identify malware. However, in reality, it is still a

difficult task to assign malware names in a consistent manner (Zeltser, 2011). As a result,

this may become a major confusion to the analyst. Mainly, because of the uncertainty of

whether existing detection signatures and tools cover the encountered malware.

An added layer of complexity for the analyst comes bundled with the advances in

tactics and dynamics in which malware is distributed, operated, and the motivations

behind it. For instance, the Kaspersky report (Kaspersky, 2013) reveals that the number

of phishing attacks has almost doubled; registering an 87% increase from last year. Not

only has the number of attacks increased, but also the organization of attackers. For

example, targeted phishing attacks by selectively gathering intelligence about targets to

craft specific phishing scams (Schneier, 2013) have been observed. This can be relatively

easy using automated social engineering tools described in (Kennedy, 2013).

In (Batchelder et al., 2013) report, malicious or compromised websites topped the

list of threats that enterprises encounter, leading to the distribution of malware as a result.

An example of such a technique to distribute malware is typically done by compromising

a site which hosts content that is of common interest to a domain or group of people.

Once compromised, the site’s HTML code is injected with malicious JavaScript possibly

exploiting vulnerabilities on users’ machines browsing the compromised site. This type

of attack is known as “Waterholing” or “Watering hole”. Specifically, this attack was

used to plant malicious JavaScript on a popular developer forum to exploit unpatched

Java (Romang, 2013) which eventually ended up compromising hosts at Microsoft

(Thomlinson, 2013), Facebook, and Apple (Mimoso, 2013). A similar attack against the

official PHP site that involved appending obfuscated JavaScript that redirected the

visiting users to malicious sites to download malware (Kimberly, 2013). A high level

diagram of the drive-by payload is depicted in Figure 1. Through a relatively similar type

of attack utilizing a 0-day vulnerability – CVE-2013-3906 – (Li, 2013), a variant

backdoor malware was distributed through embedding the exploit code into a site “known

to draw visitors that are likely interested in national and international security policy”

(Moran, Vashisht, Scott & Haq , 2013).

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 5
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Malware is a prevalent problem that can have serious consequences on

businesses. In fact, the (Verizon, 2013) report stresses that malware ranks in the top

threats facing organizations, registering 40% of the number of breaches. This is driven by

the underground economics behind exploits and malware distribution, which add more

sophistication to the attacks nature. (Grier et al., 2012) discusses the model of “Exploit-

as-a-service”. Simply, the model describes how attackers that monetize from

compromised hosts may be independent from attackers that exploit the same hosts (i.e.:

affiliate programs). Their study showed that 32 families of the most prominent malware

are distributed through exploit kits and drive-by downloads. In addition, malware

automation tools discussed in (Elisan, 2013) allow automated creation and updating of

polymorphic malware specimens with encryption and anti-debugging capabilities to

evade detection. This, combined with the commercialization and automation of exploit

kits (Kirk, 2013) chaining exploits to guarantee penetration, and possibly dropping

malware payloads increase the complexity of incident detection, tracking, and response.

Figure 1. A high-level diagram of the PHP.net compromise (drive-by).

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 6
!

Yaser!Mansour,!ymansour@outlook.com! ! !

1.2. Towards Defensive and Self-Healing Networks
The work done in (Gu et al., 2007), emphasizes a malware dialog-based

correlation technique to gather and correlate the stages of the malware (bots) infection

process. The proposed model provides a comprehensive report of the related events of the

infection which can be useful for the analyst during incident response. Also, defensive

(Johnson, 2013) and decoy (Tangwongsan & Pangphuthipong, 2007) network systems

can capture a wealth of attack information, not only through actions generated by an

attacker, but also can be utilized to capture information about automated malware

behaviors, such as a malware mapping the internal network for potential targets. A recent

project (Automated Cyber Reasoning) was initiated by DARPA (DARPA, 2013) in the

form of a cyber-challenge with autonomous defense systems as its theme. Through

software reasoning and utilizing signature-based systems such as IDSs, the goal is to

implement resilient and autonomous integrated systems capable of automatically

gathering and validating information about software vulnerabilities and patches, as well

as discovering and mitigating security flaws. This is a particularly important project

which may lead to advances in the field of self-healing networks.

In a relatively similar fashion, when a malware infection is detected, it must be

contained and responded to as early as the detection takes place. Such an infection may

be internal due to misconfigurations or user unawareness, or through an external

(unmanaged) host connecting to the corporate network. This allows conducting the

investigation and eradication phases in an isolated environment, without affecting

production systems. In order to achieve this, response actions must be dynamically

determined and automated based on the pre-correlated contextual knowledge.

2. Automated Correlation, Detection, and Response
2.1. Breaking Down the Problem Domain

Approaching a complex problem domain necessitates dissecting it into smaller

manageable sub-domains and addressing these in relation to each other. The work

presented in this paper is driven by the challenges discussed in the introduction and

which are detailed in this section.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 7
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Challenge 1: Alert-to-Host-to-User (AHU) identification

Description: In a dynamic environment, IP-to-host assignments largely depend on

a number of factors such as the DHCP server(s) and DHCP leases, port changes and host

restarts, to name a few. It is significant to be able to identify a host and its owner as soon

as the malware infection occurs. This allows the ability to track and directly approach the

infected machine for remediation. Dissecting the various types of logs generated by

different types of network appliances can also be challenging. Even though the logs are

related, unfortunately, the relation among them are not directly inferred or easily tracked,

especially in a dynamic environment. For example, hunting down an IP address that

triggered a malware alert on the IDS may not be trivial and even may be time consuming.

The analyst then needs to determine the effects and consequences of the malware,

increasing the time to respond to the incident. Other limiting factors may also include

separations of duties, where an analyst may need to access certain appliance logs but by

virtue of the job duties and ownership, the access may be not feasible.

Challenge 2: Prioritizing malware infection incidents

Description: One of the major tasks the security analyst performs is to prioritize

events generated by the IDS. The same should also apply to malware infections. This is

driven by facts that not all malware specimens are the same nor they behave in the same

manner. Most importantly, the impact imposed by different malware types may require

certain response time frames and procedures. Such prioritization should also be inherited

by the actions performed during the response. For instance, CryptoLocker malware may

be downloaded within twenty-four hours after the initial infection (Baykal, 2013). Since

Cryptolocker can lead to data and productivity loss, instance response driven by the

contextual knowledge can have a vital role in crippling the malware from downloading

the encryption keys, hence failing to encrypt files on the system.

Challenge 3: Determining initial response upon which further analysis is carried

Description: In tandem with Challenge 2, prioritizing infection incidents can help

the analyst make informed response decisions. Essentially, the existence of predefined

and instant knowledge about the malware and its behaviors can greatly improve the

response process. For example, a malware capable of propagating through the network to

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 8
!

Yaser!Mansour,!ymansour@outlook.com! ! !

critical business servers (ex.: file sharing serves) may warrant disabling access to the

server(s). This also includes actionable knowledge such as the interactions with the host

operating system such as executable directory, registry entries, persistence methods, and

so forth. The knowledge also contains steps and tools that can be used for disinfection.

Having this information in hand at the time of infection not only helps the analyst quickly

and specifically address the infection, but also reduces the risk of the malware damages,

as well as the negative productivity impact on end users.

Challenge 4: Isolating host(s) infected with serious malware

Description: Certain malware specimens may exhibit behaviors that can impact

business continuity and assets. Such types of malware require immediate containment

before further consequences occur. Considering Cryptolocker example again, the ability

to dynamically isolate the infected host as soon as an alert is generated to an isolated

network segment with no internet access may prevent CryptoLocker from contacting its

Command and Control (C&C) servers, thus preventing the malware from obtaining the

encryption keys. Consider also hosts acting as spambots due to infections with malware

such as kelihos. If not contained appropriately, it may lead to IP blacklisting of the

affected organization due to the mass sending of spam emails from the infected hosts.

Other damaging malware examples include password-stealing and exfiltration malware

such Zeus/Zbot (MMPC, 2013) and Vawtrak (MMPC, 2013), as well as backdoor

malware (RAT) allowing an attacker to control the infected host, possibly initiating a

DDOS from a wide range of infected hosts. Instantly and dynamically isolating such

infections is crucial to business continuity due the damages imposed by the malware.

Challenge 5: Bridging the gaps between helpdesk teams and security teams

Description: In general, helpdesk teams are considered the frontline when it

comes to end-users reporting technical complaints. Such issues may be caused by a

malware infection preventing an end user from performing business functions. In this

case, the helpdesk team may need to be armed with basic response skills to aid the

security team in combatting malware, and at the same time, respond to end-users

inquiries. This need is particularly evident when a malware infection outbreak is in place.

Achieving a seamless response skills sharing without overloading helpdesk teams is

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 9
!

Yaser!Mansour,!ymansour@outlook.com! ! !

important. The existence of pre-correlated knowledgebase can facilitate skills sharing. In

other words, the helpdesk team will not have to spend the time and efforts hunting down

the infected machine and then research eradication techniques. Instead, the knowledge to

fix the problem is already shared. Similarly, the security team can allocate the time saved

into analyzing other incidents or continue building and improving the knowledgebase.

Challenge 6: Minimizing the impact on business continuity and end-users

Description: Malware incidents can prove to be disruptive to business operations.

The time taken to analyze the incident, determine appropriate response and containment

actions, and eventually recover operations to its fully operational state can be costly. This

effect also extends to individual end users. Malware infections can be frustrating,

especially for none tech-savvy employees when infections prevent them from operating

routinely. The ultimate goal of early detection and response is to minimize such

disruptions for both, the business and end-users alike.

2.2. Making Use of Existing Log Data
Almost every device (managed or unmanaged) connected to the network is either

configured to or automatically generates some form of logs. Network activities registered

by network appliances are logged regardless of connection type (wired, wireless, or VPN)

and regardless of authentication mechanism (machine or user authentication). Also logs

such as firewall logs, Network Access Control (NAC) logs, and IDS alerts all provide

valuable information to the monitoring and response processes. Other logs that may not

be automatically generated but has added value include ARP and NAT tables. There may

also be internally maintained logs such a malware knowledgebase that can be used to

provide additional information to the initial detection and assessment.

Not all information recorded in the logs may be useful or necessary for a certain

task. In this case the logs may be parsed and pruned appropriately to extract the useful

information. For example a malware alert gets generated on the IDS. The alert is then

parsed to correlate it to a certain malware knowledge base record, then the offending IP

address is queried and validated against the stored NAC log record and through querying

the switch ARP tables. Another example may involve a host behind a proxy or a NATed

IP address. In this case the NAT table needs to be queried to obtain the host’s IP address

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 10
!

Yaser!Mansour,!ymansour@outlook.com! ! !

and then validate that IP address against the NAC logs store. VPN logs and session

durations also play a major role in identifying infected hosts generating malware alerts.

Once all of the information extracted from the logs is pre-correlated and

assembled in a readable manner, it becomes easy to correlate an infected host generating

alerts on the IDS, its owner and possibly the affected OS. Eventually this leads to

informed decision making on how to proceed with the incident. Other malware alerts may

need immediate action such isolating the infected host. With the information already

correlated and stored, automatic network actions can be initiated to isolate the infected

host preventing further network activities from that particular host. At the same time, the

security team is notified of the action. Combined with the preexisting malware

knowledge, responding to the incident can be quick.

2.3. Researching Malware for Behavior and Mitigations
Researching malware in the context of this paper focuses on building the

knowledge for identifying 1) malware network and C&C behaviors, 2) malware

interactions with the host and the Indicators of Compromise (IoC), and 3) eradication and

disinfection methods and tools. Such knowledge is mainly accumulated by performing

two major tasks in order to research and obtain knowledge about malware. The first task

involves utilizing online resources specializing in malware analysis. Several online

resources provide a wealth of analysis data about malware families such as VirusTotal,

Malwr, TotalHash, Microsoft Malware Encyclopedia, and malware analysis blogs.

The second task involves dynamic malware analysis in a testing environment

when possible or necessary. Through this phase, the analyst will be able to uncover and

dismantle the various external and internal network activities generated by the malware.

These may be DNS queries for domains requested by the malware, anomalous HTTP

requests and User-Agents, or even port scans against the internal network. Another added

advantage is the ability to identify variant behaviors of existing malware, such as new

C&C domains and communication patterns. Thus, allowing the analyst to unleash the

information required to craft custom signatures or update existing ones. Later, these will

be integrated with the existing IDS infrastructure to detect suspected network activities.

In addition to capturing network traffic, the analyst will also be able to record the

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 11
!

Yaser!Mansour,!ymansour@outlook.com! ! !

interactions between the malware and host, such as file system and registry changes. This

helps the analyst to reveal patterns of interactions which can be converted into IoCs that

help in responding to and the reporting of malware incidents. Simulating real life

infections can also serve as practical tests for malware eradication techniques and tools.

All of the experienced knowledge collected during malware research and analysis

provides an in-depth understanding of malware behaviors. This provides a solid ground

upon which the analyst can devise incident response plans to combat malware infections.

Eventually, the knowledge is presented in a consistent and formatted manner that is easily

consumed to support the response process in future malware infection incidents.

2.4. System Components and Workflow
The proposed framework consists of four key components; Logging and

Correlation, Detection, Response, and Reporting. Each area is comprised of one or more

modules, each of which is responsible for a certain functionality and cohesively operating

to achieve the desired behavior. A high level architectural diagram is illustrated in Figure

2.

Output%and%R eporting

Malware%KB Log s%Eng ine

Log s%Parser Log s%
Correlator

MAL%Correlation%and%Decision%Engine

Final%Correlation,%Decisions%and%Actions%+ %H istory

Alerts%Parser

Appliances%
Log s

GUI%Veiws

SID Level

Threshold

Continuous%log g ing%
and%correlation%

Actions%Eng ine

Security
Team

Detection

Response

Security
Team

Helpdesk
Team

IDS/IPS
Alerts

Figure 2. Components of the automated Correlation, Detection, and Response Framework.

2.4.1. Logging and Correlation Component
This component consists of two modules; 1) Log Parser and Correlator, and 2)

Malware Knowledgebase. The Log Parser and Correlator is responsible for receiving the

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 12
!

Yaser!Mansour,!ymansour@outlook.com! ! !

various log messages from different types of appliances. Logs like NAC authentications

for clients connecting and authenticating to the network through the wire, wireless, and

VPN. For each log type, a log parser is written to extract the fields of concern such as the

user authenticating to the network, IP address, MAC address, switch, and the switch port

the user was authenticated on. Each parser will extract the appropriate fields of the

associated log type to create structured data stores for correlation in a later step. This

way, any machine that comes onto the network, or re-authenticates, its associated logs get

stored in the data store. Further processing takes place by querying the switch on which a

machine is authenticated on-demand to pull the ARP tables. This is necessary for three

major reasons; 1) verify that the stored log record for a machine matches the entry in the

ARP table, 2) track the ARP changes for a particular machine, and 3) correlate the

machine which authenticated through the wire to its physical wall jack port, the wire

label connecting the machine, and eventually the room number in which the machine

exists. At this point, the owner of the machine and its physical location is determined and

stored. All of the above takes place on a scheduled manner even if there are no IDS alerts

relating to a machine. Other logs are also pulled on demand, mainly when an alert is

triggered. Such logs include NAT tables for machines behind a NAT device or a proxy.

This is required to correlate the private IP address with the authenticated machine, instead

of taking action based on the NAT public IP address.

The Malware Knowledgebase module is basically a data store for information

about malware. Using the methods identified in Section 2.3, information such a summary

description of the malware and its capabilities, client IoC’s, malware names by different

vendors, the tools for disinfection and the order in which they should be run is stored.

Currently, the knowledgebase is manually and continuously maintained by the security

team. The identification of malware names against the tools used provides a confidence

level that the used tool is actually detecting the encountered malware. Another purpose

for this scheme is that if other malicious programs are detected, they are distinguished.

Part of researching malware is to assign a custom defined severity/action level and a

threshold for each identified malware knowledgebase record. The severity/action level

and the threshold are used in the response module. In general, the severity level defines

the automated action required by this level. While the threshold defines the acceptable

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 13
!

Yaser!Mansour,!ymansour@outlook.com! ! !

time period within which, a human action is required for disinfection. Once all of the

information of a given malware is defined, it is correlated to a signature ID for the

detection component. Eventually, this knowledge base will serve as an initial response

plan and a guide for security and helpdesk teams.

2.4.2. Detection Component
The Detection module consists mainly of the IDS generating an alert when a

malware network traffic is detected. The generated alert is forwarded to the Alerts Parser

to extract the signature ID, the offending IP address and port. This information is then

processed by the Response component.

2.4.3. Response Component and Workflow
With the contextual intelligence about the environment, hosts, and malware

knowledge are prebuilt, the MAL Correlation and Decision Engine module is ready to be

invoked. A high level workflow of how the MAL Engine operates is depicted in Figure 3.

IP

A lert

Contextual.
Intellig ence

Malware.KB
SID

Intellig ence.
Record

Malware.
Record

Connection

Decision
Severity

Action

Correlated
Knowledg e

Correlated .Knowledge.+
A lert.InformationNotify

Figure 3. High level Framework workflow.

The MAL Engine is triggered when an alert is generated by the IDS. After the

alert information is parsed, the Engine correlates the signature ID with the record

predetermined in the malware knowledgebase. At the same time, the Engine identifies the

source network (wired, wireless, or NAT, etc.) from the alert IP address to query the

appropriate data store and then correlates it with the predetermined record of the

associated host. Based on the predefined severity/action level, the MAL Engine informs

the Actions Engine of the response required to act upon. The Actions Engine then

performs the actual response by either 1) only notifying the security and helpdesk teams

for human interaction, 2) forcing the switch port to fail authentication to a quarantine

VLAN with a captive portal to inform the end-user of the action, and then notify the

security and helpdesk teams of the action, and 3) shutting down the switch port promptly

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 14
!

Yaser!Mansour,!ymansour@outlook.com! ! !

inhibiting any further network activities. The last two actions are also accompanied with

notifications.

2.4.4. Output and Reporting
This is the final component and destination of all of the data and resulting actions

generated by the Detection, Correlation, and Response components. The information

stored provides input for the incident response reporting, as well as, historical pivoting

into previous malware incidents. It serves as a store for lessons learned where each

experienced incident is updated with more data as observed in the field. To facilitate the

access to all data stores and knowledge, a custom graphical interface was developed to

allow members of the security and helpdesk teams search through and update the

information.

3. Case Studies
3.1. Dorkbot Variant Worm
3.1.1. Initial Threat Vector

Unfortunately, patient zero was not accurately identified. This may be due to the

fact that patient zero may have been infected outside the enterprise network, or simply

due to non-existence of detection signatures for this particular variant of Dorkbot.

However, examining an identified infected host revealed that an unsolicited Skype

message containing two links to suspicious files hosted on MediaFire cloud storage

service.

By the time of examining the suspicious links, the files were already removed. A

current search for the pattern of the URI and files names reveals more recent results on

VirusTotal resembling the patterns examined.

3.1.2. Client-to-Server (CTS) and Server-to-Client (STC) Infections
Client-to-Server (CTS) infection is referred to when a Windows client infected

with the Dorkbot variant connects to a Windows file server (shared network drive),

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 15
!

Yaser!Mansour,!ymansour@outlook.com! ! !

leading to propagate the malware to the server . While Server-to-Client (STC) infection is

referred to when a clean Windows client – uninfected with Dorkbot – connects to a

shared network drive previously visited by an infected client, hence propagating the

malware from the server to the client; both infection types are depicted in Figure 4. The

distinction between both scenarios is explicitly illustrated, mainly for two reasons: 1) the

server acts as an incubator for the malware executable to infect clean clients connecting

to it. Hence, all infections propagating from an infected client to a previously unaffected

shared network drive follow the same pattern and the naming conventions, 2) the

malware executable on the server is idle and does not run on the server itself, i.e., it does

not have any processes spawned nor it performs any type of C&C.

Create&Request&File

Create&Request&File

Create&Request&File

Create&Request&File

Find&Request

SetInfo&Request&File

Create&Request&File

1

2

3

4

5

6

7

Infected&C lient File&Server
“snkb0ptz”&folder&at&root&directory

“snkb0ptz\Desktop.ini”&file

“snkb0ptz\snkb0ptz .exe”&file&

“autorun.inf”&file&at&root&directory&

enumerate&all&folders&“*”

modify&fo lders&attributes

create&“.lnk”&shortcuts&corresponding &
to&enumerated&folders

C lean&C lientFind&Request&File

Create&Request&File

Write&Response

Write&Response

Create&Response&File

Write&Response

1

2

3

4

6

read&“snkb0ptz”&& &contents

“snkb0ptz\snkb0ptz .exe”&file

“snkb0ptz\snkb0ptz .exe”&file
SMB2_FILE_STREAM_INFO

“snkb0ptz\desktop.ini&“

“autorun.inf”

“autorun.inf”

ClientXtoXServer&(CTS)&Infection&Pattern ServerXtoXClient&(STC)&Infection&Pattern

Notify&Response7
ENUM_DIR,&STATUS_NO_MORE_FILES

5

snkb0ptz.exe,&Md5:1e7f421d3387555f75b4822f99bab93e
&or&snkb0pt.exe&Md5:&1cdcf8f56f5d90ef0246aa521803443a

Figure 4. Client-to-Server (CTS) & Server-to-Client (STC) infections over NetBIOS SMB UDP

445 (Typical SMB conversation flow – Negotiation, Session Setup, TreeConnect – is omitted).

In a CTS infection, when a Dorkbot infected client (192.168.106.133) connects to

the server; through SMB over TCP port 445, the malware on the client creates a folder

named “snkb0ptz” on the root directory of the browsed shared drive, Figure 4 (�).

Once the folder is created, the malware starts copying its files – “desktop.ini” and

“snkb0ptz.exe” – which will be hosted on the server into that folder, Figure 4 (����).��

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 16
!

Yaser!Mansour,!ymansour@outlook.com! ! !

�
Another file, “autorun.ini” is dropped, Figure 4 (�) at the root directory of the

browsed folder. The malware then enumerates all folders and manipulates their attributes,

Figure 4 (���) through the SetInfo FILE_BAIC_INFO structure (MS Dev, 2013). The

manipulation of the attributes is discussed at the end of this page.

Finally, for each enumerated folder, the malware creates the respective shortcuts –

“.lnk” – using the original file names, Figure 4 (
). These are discussed later.

Examining the infected server reveals the results of the actions observed during

the capture while the malware is infecting the server. Listing the directories with

attributes marked as Read-Only, Hidden, and System, exposes the manipulated attributes

of the infected shared folders, “share” and “share1”, as depicted in Figure 5.

Infected(
shared
folders

“snkb0ptz”(
folder

“autorun.inf”

“snkb0ptz”(
folder(

contents

Figure 5. Infected shared folders attributes and the "snkb0ptz" folder.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 17
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Further examination of the contents of the infected shared folder “share1”, shows

the hidden original files and the respective shortcuts created by Dorkbot. Mainly, these

are created to deceive end users on the changes made by the malware, and at the same

time, force end users to execute the malware into their hosts once access is attempted.

This is evident when examining the Target value of the shortcut which points to the

malware executable file within “snkb0ptz\snkb0ptz.exe” as shown in Figure 6.

Figure'6.!Shortcut!Target!value!points!to!the!malware!executable.(

At this point, the server is hosting the malware, and all of the created shortcuts

corresponding to the original folders point to the same malware executable. When a new

client connects to the server and attempts to access (double-click) a shortcut, the malware

executes and propagates itself into the client host through SMB over TCP port 445. The

infection process in STC starts with the client (192.168.5.132) requesting to find –

FILE_ID_BOTH_DIR_INFO structure (MS Dev, 2013) – and read the “snkb0ptz” folder

and its contents, Figure 4 (����).

Since the file exits on the server, the infection process proceeds with requests to

read/write the malware executable stream, Figure 4 (
) – FILE_STREM_INFO – (MS

Dev, 2013).

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 18
!

Yaser!Mansour,!ymansour@outlook.com! ! !

The infection then continues by writing the “desktop.ini” and “autorun.inf” files

back to client, Figure 4 (�, �, �).

Finally, a notification response is sent from the server to the client that there are

no more files to read, Figure 4 (�) through the SMB error message

STATUS_NO_MORE_FILES (MS-SMB, 2013).

Once all of the malware files are transferred to the client, the executable

“snkp0ptz.exe” spawns and executes another process with a name following the regular

expression of [A-Z]{1}[a-z]{15}.exe or [a-z]{15}.exe. This executable is then stored on

the local disk of the infected client at “%AppData%\Local\Temp\” or

“%AppData%\Roaming\”. This newly copied binary is responsible for all of the

Command and Control Communications (C&C) on the client.

Throughout the process of analyzing the CTS and STC infections, several

behaviors were observed. First, the CTS infection is consistent in terms of the malware

execution actions, the malware folder/file names and locations, as well as the size of the

malicious files. Second, when CTS infection is in action against an already infected

shared folder/drive, the malware on the client still executes, however, all requests made

to the server fail. Finally, if the request to create the malware folder “snkb0ptz” is

interrupted/prevented, the remaining requests will fail and the malware will not be

transferred to the server. Odd behaviors were also observed. In a STC scenario, the client

issued a SMB create request for the file “SwDRM.dll” located within the malware

“snkb0ptz” folder. However, neither the path “snkb0ptz\ui\” nor the file “SwDRM.dll”

existed. This is evident in the server’s response to the initial request made by the client.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 19
!

Yaser!Mansour,!ymansour@outlook.com! ! !

3.1.3. Command and Control Communication (C&C)
Once a client is infected with the Dorkbot variant, the malware starts its C&C

communication. Seventeen unique domains were requested through DNS. A list of the

domains queried by the malware, together with the protocol(s) and port(s) used for

communication, after the DNS queries, are summarized in Table 1 (Symbol d# is used for

shortness and does not reflect order).

Sym. Domain Protocol Port
d1 s117.hotfile.com TCP/HTTP 80
d2 s133.hotfile.com TCP/HTTP 80
d3 s431.hotfile.com TCP/HTTP 80
d4 s624.hotfile.com TCP/HTTP 80
d5 f.eastmoon.pl TCP/IRC 9000
d6 xixbh.net TCP/IRC 9000
d7 f.dailyradio.su TCP/HTTP 80
d8 supp.cantvenlinea.biz TCP/HTTP 1942
d9 xxxxxxxxxxxxxxx.kei.su TCP/HTTP 1942
d10 s.richlab.pl Server Failure -
d11 photobeat.su, h.opennews.su, o.dailyradio.su, xixbh.com, gigasbh.org,

uranus.kei.su, gigasphere.su
DNS blocked -

'
Table 1. Summary of Dorkbot variant domains, protocols, and ports observed during C&C.(
!

Each queried domain or domain set has a certain purpose within the malware

execution lifecycle. In summary, three major purposes were observed, namely 1) further

download malicious binaries, 2) join IRC channels, and 3) posting Bitcoin mining jobs.

The actions are summarized in Figure 7 and will be discussed later in this section.

d1,$d2,$d3,$d4

d5,$d6

TCP80(HTTP)$GET

d7

TCP$
9000

TCP1942
(HTTP)$POST d8,$d9

TCP80
(HTTP)$GET

md5:$
d2fd0a65f1eaee0e15f115d9915417bd

md5:$
8e96d541372dd2b6b2df761520fd5e5d

md5:
72757c645aae097ad161e5a32c9618ec

md5:
3774e8079e1620249ffbadcafe6b0e0

JOIN $#sp$yap

JOIN $#xix

#irc

#irc

POST
XJMiningJExtensions

UserJAg ent:$Ufasoft$b itco in $miner

POST
XJMiningJExtensions

UserJAg ent:$Ufasoft$b itco in $miner

B

B

Worm:$Win32/

Dorkbot.AT

Worm:$Win32/

Dorpiex.A

Trojan:$Win32/

Vicenor

{"method":$"g etwork",$

"params":$[],$ "id":0}

{"method":$"g etwork",$

"params":$[],$ "id":0}

image.png

PING/PONG

irc.priv8net3.com

irc.priv8net2.com

irc.priv8net1.com

md5:$
1f892a1f4c7eb9dab56316c071ca7db9

VirTool:$Win32/

CeeInject.gen!JH

Figure 7. Summary of Dorkbot variant C&C communication.!

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 20
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Starting with queries to d1, d2, d3, and d4, which are used to resolve four

different URL’s, each of which leading to the download of a different binary to the

requesting client. According to Microsoft Protection Center, these are detected as Worm:

Win32/Dorkbot.AT, Worm: Win32/Dorpiex.A, Trojan: Win32/Vicenor, and VirTool:

Win32/CeeInject.gen!JH respectively.

After the successful response to d5 and d6 DNS queries, a TCP connection is

established over port 9000. Upon close examination of the traffic, the session was

established as an attempt to engage the infected host in IRC communication. Specifically,

joining the infected host to two different channels; “#sp yap” and “#xix”, however, only

the former channel was successfully joined, Figure 8, (��. Before joining the “#sp yap”

channel, the infected host was assigned a nick and a user with user-mode of “+iwG”.

According to (Kalt (A), 2000), the “+iw” makes (+) the user – the infected host –

invisible (i); no other users can see the joined user, and the (w) turns on WALLOPS

messages; which allows a message to be sent to all connected users. The (G) user mode

character is not defined in the RFC and may be implementation-dependent. It may be

used to add censorship to messages by stripping out bad words.

One of the major purposes observed for joining the infected host to an IRC

channel is to have the host report its infection status through an IRC private message.

The packet illustrated in the capture above was sent when a USB thumb drive was

connected to the infected host. By the time of writing this paper, the channel “#sp yap” is

sinkholed by CERT Polska. Figure 8, (�� illustrates the IRC channel sinkhole.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 21
!

Yaser!Mansour,!ymansour@outlook.com! ! !

1

2

Figure 8. Infected host attempt to join #sp yap and #xix IRC channels �. The IRC channel #sp yap

sinkholed by CERT Polska �.

A download of what appears to be an image file of a PNG extension followed the

DNS query to d7. However, the image does not follow the Portable Network Graphics

(PNG) Specification (Boutell, 1997) and (Adler et al., 2003). Specifically, the PNG

Signature and the IHDR (first chunk) and the IEND chunks in the downloaded image

does not conform to those defined in the standards. The top capture represents the Hex

values of the PNG signature and IHDR chunk of the downloaded image compared to the

same of a valid PNG image.

Several HTTP GET requests were made to download the PNG file from the same

domain with the same URL over a fixed time period; eight minutes between each request.

This is may be indicative of some form of a keep-alive request and confirming that the

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 22
!

Yaser!Mansour,!ymansour@outlook.com! ! !

infected host is able send requests and receive responses and download files, or it may be

a form of a configuration file download for Dorkbot.

Further throughout the execution lifecycle of the malware, domain d8 or d9 may

be queried. It was observed in the testing lab that one host requested domain d8 and

another infected host queried domain d9. Upon successful query response, a TCP session

is established over port 1942 to constitute an HTTP POST request. This is valid for both

observed infected hosts. Below is an example malware process running on an infected

client revealing the parameters used to run the binary generating the POST requests.

The command line arguments of the “bitcoin-miner.exe” are described as follows:

(-a): to specify the hashing algorithm or the time in seconds between each Getwork

request, in this case 60 seconds, (-l): allows enabling or disabling Long-Polling, in this

case it is disabled, and (-o): specifies the URL to which the miner will connect to.

Examining the associated HTTP traffic, exposes Bitcoin mining signature through the

Getwork Method and its X-Minining-Extensions (Bitcoin, 2013). It is important to note

that bitcoin mining is a process-intensive task which involves hashing and validating a

256 padded hexadecimal string in little-endian order with SHA256. Discussing the

Bitcoin protocol and the factors involved in details is out of the scope of this paper and

the focus is driven on examining the HTTP traffic generated by the malware.

According to the specification, a miner requests a new block header to hash or

solve through the Getwork method (Getwork has been superseded with the

Getblocktemplate method). Getwork is a JSON-RPC method over HTTP that when called

with no parameters, allows a miner – the infected host in this case – to get new work to

solve. In order to fulfill the new mining job, the method request should be sent with an X-

Mining-Extensions header (to an extent, similar to an HTTP header) specifying the

supported mining extensions. Another distinguishing observation of the POST request is

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 23
!

Yaser!Mansour,!ymansour@outlook.com! ! !

the User-Agent type in the HTTP header. The below two captures illustrate the mining

extensions and the User-Agent used in both requests to d8 and d9.

!

!

Although the POST requests in both cases are alike, the backend implementation

of both requested servers may be different. This is evident in the responses generated by

each POST request. For example, A POST request made to d8 generated the below

response.

From the response above, the mining work is done through a mining pool

(50BTC). A mining pool consists of a group of miners unifying their mining resources to

solve the same mining problem. This technique can increases the probability of solving

the problem within time periods less than an individual would. In this case, bitcoins

gained from solving the problem are distributed among the miners within that specific

mining pool. The mining pool is specified through the X-Long-Pooling header; which

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 24
!

Yaser!Mansour,!ymansour@outlook.com! ! !

allows specifying a URI and ports different than the original connection. The X-

Blocknum header specifies the block number that is currently being worked on. This

header is utilized when mining pools are used and is not provided when using a local

bitcoin instance (bitcoind). The X-Roll-NTime header specifies the number of seconds

that the mining server is willing to accept block headers for. Combined with long

pooling, the mining server can determine how old a block header it can accept.

The second response for the request made to d9 is quite different. Notably, the

inclusion of the X-Stratum header.

This header contains a URI pointing to the server’s Stratum interface. This

instructs the mining client to switch to the URI specified in the X-Stratum header. The

value of “stratum+tcp” indicates that the communication is over TCP.

It is worth noting that both POST requests acted as gateways to mining servers to

do the actual work instead of conducting the mining individually, increasing the chances

of successful bitcoin mining, and hence better bitcoin profitability. Also, the credentials

used in both POST requests were different and were sent unencrypted.

3.1.4. Dorkbot Variant Objectives
By now, the objectives of this Dorkbot variant may be anticipated. Through its

infection techniques (CTS and STC), ultimately, the malware guarantees a maximum

infection rate, especially if the malware is not responded to and eradicated within

appropriate time frames. The more hosts are infected, the higher the number of miners is

generated, hence, the higher probability of maliciously earning bitcoins.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 25
!

Yaser!Mansour,!ymansour@outlook.com! ! !

3.1.5. Infection Containment and Eradication
Upon the initial symptoms of the infection were discovered, a sample of the

malware executable was preserved for analysis in a testing environment. This was crucial

for the analysis phase of the malware, mainly, for two reasons; 1) there were no IDS rules

designed specifically to trigger on the malicious network activities from the identified

host, and 2) at the time, the deployed antivirus product had no signatures nor heuristic

detection techniques to flag and quarantine this particular variant of Dorkbot. However,

once the malware was executed, its network activities, such as DNS and HTTP requests

were identified and recorded. This information led to the creation of new sixteen Snort

(Sourcefire, 2001) IDS signatures (VRT 2013, April 16) to detect the network presence

of the malware. The signatures then were pushed into the IDS. The signatures covered

both, the C&C and CTS/STC network activities. In this case, any infected client

performing the C&C but not accessing any shared media is detected, and any infected

client attempting to access the shared media is also detected. This step is necessary to

prevent an infected client continuously propagating the malware to the server, hence, no

new clients will be infected by the server. The malware interactions with the test host

were also observed and recorded.

The malware knowledge records were then created and stored into the malware

knowledgebase in relation to the newly created IDS signatures. The records contained the

malware IoC’s such as the malware directory, malware naming convention, and registry

keys added by the malware. The records also contained a list of the tools that were tested

to perform as required to disinfect a detected host. A minified malware knowledgebase

record can be similar to the one depicted in Figure 9.

This way other IT teams such as the helpdesk can be early and smoothly engaged

into a scaled out incident response plan due the methods the malware uses for

propagation. It is worth noting that at the time of infection, there was no sufficient online

information available on this Dorkbot variant. Multiple freely available tools were tested

for detecting this variant. Six hours from the infection, the first reports of this variant

started to come online.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 26
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Figure 9. Sample malware knowledgebase record.

Once all of the information is stored, a host detected exhibiting either the C&C or

CTS/STC network activity resulted in the automated and dynamic response action of

moving the host to the quarantine VLAN, further preventing any type of network activity

to the C&C and IRC servers, or infecting the file server with the malware executable,

thus, preventing new clients from being infected. Owners of the quarantined hosts were

presented with a captive portal explaining the reason of the quarantine and the steps

forward to disinfect the machine and move back to their normal state. In the case of

infections originating from VPN addresses, an existing Snort (Sourcefire, 2001) IPS –

inline – configured in Drop mode on the LAN side was updated with the same signatures

created during the analysis of the malware. This prevented any CTS infections and the

associated DNS queries from hosts connecting to the enterprise through VPN. .

Due to placing the system into action, any infected host connecting to the network

was identified and automatically reacted upon by moving it to the quarantine VLAN. As

soon as the notification of Dorkbot infection is received, the eradications tools were

pushed and ran on the infected client through the enterprise client management software.

Human interaction with the infected hosts was minimal and only for confirming that the

host was properly disinfected. Eradication on the server side was semi-automated. A

PowerShell script was developed to identify the presence of the malware, delete it, and

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 27
!

Yaser!Mansour,!ymansour@outlook.com! ! !

reverse its actions by modifying folder attributes back to their original state. All of this

resulted in minimizing the number of infected hosts, hence, leading to reverting

production systems and the infected hosts to their normal operational mode within less

than twelve hours of the initial identification of the infection. This included over 35

infected hosts and one server. Although there will always be costs involved in

disinfecting clients, however, the Recovery Time Objective (RTO) in this case could

have been lowered or even eliminated – from a server perspective – if existing IDS and

antivirus signatures were in place. If such signatures existed, the malware may have

never propagated to the server, hence, it would not act as the malware incubator infecting

connecting clients.

3.2. Steckt and Neeris Worms/IRCbots
3.2.1. The Entry Point

An odd and inactive binary with the name “boom.exe” was discovered on a host

with no signs of potential malware infection. The binary was preserved for analysis to

determine its state. When executed in a test environment (physical/virtual), its process

runs for a minute and then terminates with no noticeable behaviors or interactions. A

memory dump of the process was captured using ProcessExplorer (Russinovich &

Cogswell, 2013). The dump contained text usually seen in phishing and scam attempts.

At minimum, three different languages where observed as shown in Table 2. The

translation among the languages is interchangeable except for the Arabic/English text. In

the context of the Arabic language, the repetitive usage “Allah Allah” may be interpreted

as a sign of admiration, which aligns with the context of “you look beautiful here”. Terms

“selam” and “marhaba” are usually used for greetings.

Spanish Arabic/English English

Table 2. Sample of spam-like strings found in "boom.exe" memory dump.

References to Skype and another chat application known as “digsby” were identified in

the dump. Emoticons used in chat apps were also observed. For example, in Skype the

text “(sun)” is interpreted as a sun icon to both ends of the chat session.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 28
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Most importantly, a suspicious shortened URL was observed, as shown in the

memory dump above. This combination shares resemblance with the Dorkbot variant

suspected initial distribution method discussed in Section 3.1; unsolicited Skype

messages. Based on the findings, an assumption of process injection was considered;

where the binary would inject the text identified earlier along with the shortened URL

into a Skype chat session. In order to test the suggested injection behavior, a Skype chat

session was setup while the binary is being executed. However, the binary process kept

terminating with no observed suspicious behaviors. As a result, the shortened URL was

visited through a web browser to land on a 4shared – cloud storage service – web page.

The web page hosted a downloadable file with the name “hotimg.facebook.pif”.

A simple test environment consisting of two hosts connected to a SOHO router

was setup. One of the hosts is running Windows – with ProcessExplorer (Russinovich,

2013) and Fiddler (Telerik, 2013) – to execute the malware on, the second host is a Linux

running Wireshark (Wireshark, 2013) and tcpdump (tcpdump, 2013) for capturing traffic.

The SOHO router runs the custom firmware DD-WRT (DD-WRT, 2005) to facilitate

traffic mirroring through IPTables (Netfilter, 1999) to the Linux host. Eventually, the

SOHO router is connected to the Internet gateway to facilitate Internet access. The binary

was downloaded and executed to record its network activities.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 29
!

Yaser!Mansour,!ymansour@outlook.com! ! !

3.2.2. Chains of Execution and Infection Map
Due to the number of interrelated activities, the flow has been broken into three

infection stages. Table 3 summarizes the domains/IP addresses used in relation to each

stage. Figure 10 illustrates the infection execution map and the suggested stages.

Sym. Domain/IP Address Protocol Port Stage
d0 4shared.com TCP/HTTP 80 1, 2
d1 h1479562.stratoserver.net TCP/IRC 5050 1,3
d2 divshare.com TCP/HTTP 80 2, 3
d3 st4.divshare.com TCP/HTTP 80 2, 3
d4 topcongo.be TCP/HTTP 80 3
d5 team.immsky.de TCP/IRC 81 3
d7 app2.divshare.com TCP/HTTP 80 3
d8 .static.steadfastdns.net DNS/PTR 53 3
d9 f.eastmoon.pl TCP/IRC 9000 3
d10 wifi-usbx.me DNS 53 3
d11 h1604802.stratoserver.net TCP/RELOAD 1986 3
IP1, IP2, IP3 87.106.83.47, 217.160.123.192, 37.123.118.4 TCP/RELOAD 1986 3

Table 3. Summary Steckt and Neeris worms/IRCbots domains and IP addresses used during C&C.

Stage&3

Stage&2Stage&1

google_32404.exe,&
g oogle_5638.exe

joke

foto

f***

sp

omg
trafic

#IRC

g oogle_44516.exe,&
flashapp.exe

snkb0pt.exe,&
g oogle131103.exe,&
g oogle372622.exe,&
g oogle743743.exe

mdm.exe,&
g oogle081250.exe,&
g oogle641691.exe,&
g oogle982208.exe

sms.exe,&
g oogle137733.exe,&
g oogle328796.exe,&
g oogle616802.exe

d2,d3

boom.exe

hotimg .facebook.pif

#biz&abc

d0

adobereader.exe

#IRC

#n&jobs,&# test1,&# test2,&# test3

Xd0

d4

d2,d3
d2,d3 d4

#IRC d9

#sp&yap

IP1,&IP2,&IP3

10

#spreadPRIVMSG

JOIN

JOIN

1 2 3

4

6 7 8

9

java@jobs&#biz5

Stage

IRC#&activity

Binary &
A lias(s)

d10,&d11

Binary

X No&Action

JOIN

Sinkholed
IRC#

#IRC IRC&activity

d1

d5

d1,&d7,&d8

Figure 10. Infection map of the Steckt and Neeris worms/IRCbots.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 30
!

Yaser!Mansour,!ymansour@outlook.com! ! !

 Stage 1 – is initiated with resolving the shortened URL extracted from the binary

“boom.exe” memory dump. As discussed in Section 3.2.1, the final destination of this

URL is the cloud storage service; 4shared. The hosted binary “hotimg.facebook.pif” was

downloaded. Upon execution, an alias process with the name “adobereader.exe” was

spawned. Following the execution, A DNS response to the domain

“h1479562.startoserver.net” was returned with a resource record of “85.214.137.233”.

The infected host then established a session to join the IRC channel “#biz abc” over TCP

port 5050.

The user mode (-ix) observed denotes that 1) the host (nickname) state within the

channel should be visible through the “-i” (Kalt (A), 2000), and 2) the hostname or IP

address of the particular nickname should be unhidden/unmasked through the “-x”. The

user mode (x) may be implementation specific.

 Eventually, the infected host connected to the Internet Relay Network

“irc.priv8net7.com”. As a side note, later in Stage 3 the IP address 85.214.137.233 is also

returned as a resource record for a different domain; “team.immsky.de”. Although, no

connections were established to that same IP address in that case, however, the same

Internet Relay Network “irc.priv8.net7.com” is joined.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 31
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Generally, this is dependent the nature of an IRC network; a group of IRC servers

connected to each other (Kalt (B), 2000), Figure 11 (!). However, there are cases where

the implementation of such an architecture may be different. The variations of interest in

the context of this discussion are IRC bouncers, and IRC daemons.

An IRC bouncer, Figure 11 (") – BNC for short – can be thought of as a hosted

software component implemented to act as an IRC proxy server between a client and the

final IRC server. In this case, the BNC is capable of a) relaying the IRC traffic between

the client and the IRC server, and b) hide the connection details (hostname or IP address)

of the other end of the IRC session. The use of BNCs – sometimes referred to as stepping

stones – has been discussed in (Ramsbrock, Wang & Jiang, 2008) and (Goel, Feng, Feng

& Maier., 2007). In fact, several open-source IRC bouncers are available, such as ZNC

and psyBNC. On the other hand, an IRC daemon (IRCd) is the software implementation

of the server side of the IRC protocol, Figure 11 (#). IRCd servers are mostly built to

host private IRC chat services. However, an IRCd server may also be linked to an

existing IRC network, for example, EU-EFnet.

A

C

D

3
4

6

5

2

BNC

1

B

C

D

3
4

6

5

2 B

1
A

C

D

3
4

6

5

2 B

A

IRCd

IRC/Client/connected/to/BNC
IRC/Inter8Server/Communication
IRC/Client/connected/to/IRCd/Server

A8D:/IRC/Server

186:/IRC/Client Sample/IRC/Sub/Network

1 2 3

h1479562.stratoserver.net

irc.priv8net7.com

h1479562.stratoserver.net

irc.priv8net7.com

1

Figure 11. Simplified projections of IRC networks/potential variations mapped against observed domains.

One of the major challenges encountered during the analysis of IRC traffic is the

implementation-specific features of an IRC network, server, or even client. The issue

inflates with custom BNC and IRCd implementations.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 32
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Table 4 summarizes the activities observed during Stage 1. The Source and Alias

columns refer to the origin of the activity, C&C refers to the contacted domain/IP

address, Protocol and Port illustrate the Protocol and the Port used by the origin, and the

Purpose refers to the action/purpose of the observed network activity.

Source Alias (if any) C&C Protocol Port Purpose
boom.exe boom.exe 4shared.com TCP/HTTP 80 Download binary
hotimg.facebook,pif adobereader.exe h1479562.stratoserver.net

/85.214.137.233
TCP/IRC 5050 Join IRC #biz abc

Table 4. Summary of the activities observed during Stage 1.

Stage 2 – After the IRC channel “#biz abc” has been joined in Stage 1, several

URLs were pushed to the infected host. This denotes the beginning of Stage 2.

The first URL points to a binary file with the name “joke” hosted on a cloud

storage service; divshare.com. The three remaining shortened URLs resolve to a single

“Script” or “screensaver” file of name “foto.scr” which is hosted at the cloud storage

service 4shared.

hxxp://www.4shared.com/download/Hq2h11JE/foto

Immediately after, a DNS response to the domain “diveshare.com” was received.

This was followed by an HTTP request to download the binary “joke”. It is worth noting

that the domain “4shared.com” was not queried, hence, the file “foto.scr” was not

downloaded. Also, the HTTP response from the server returned HTTP status 302 and had

the Location HTTP header present. This resulted in requesting the file download from a

subdomain of “diveshare.com”; in this case “st4.divshare.com”, to fetch the file,

however, the URL pattern is different. The second response also returned status 302

resulting in the redirection to another HTTP request with yet a different URL pattern.

This redirection behavior may have been implemented in an attempt to avoid detection by

jumping from one park to another until the final park containing the malicious file is

reached.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 33
!

Yaser!Mansour,!ymansour@outlook.com! ! !

At this point, the binary “joke” has been downloaded to the local disk and has the

following information

Although the file “foto.scr” was not downloaded automatically, the file was

manually downloaded through the browser for later inspection. The file “foto.scr” has the

following information.

Following the download of the “joke” file, several private messages – denoted as

PRIVMSG – from the infected host to the IRC channel “#spread” were observed. The

purpose of this channel is unclear as it has never been joined by the infected host.

However, the messages exchanged indicate a reporting mechanism of the state of the

execution back to the attacker, for example, the message “created proc:” and the PID

value of the executable. This behavior is evident in all download/execution attempts.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 34
!

Yaser!Mansour,!ymansour@outlook.com! ! !

As noted in the capture above, the binary “joke” was executed with an alias of

“google_32404.exe”. Pivoting into its memory dump reveals the below shortened URLs.

These shortened URLs follow the same pattern of the ones pushed through the

IRC channel “#biz abc” as discussed at the beginning of Stage 2. Although they are

different, they still point to the same 4shared URL hosting the “foto.scr” file.

After that, the IRC channel “#biz abc” reported an error and the infected host

exited the channel. Shortly later, the infected host rejoined the same channel and the same

behavior as discussed at the beginning of Stage 2 was observed again. The only

difference in this activity is the alias name “google_56383.exe” of the executed binary

“joke”. The memory dump of this new alias contains the same shortened URLs found in

the memory dump of the previous alias “google_32404.exe”.

 At the time of the analysis, the execution of both binaries “google_32404.exe”

and “google_56383.exe” did not yield any noticeable network activities. Given the URLs

found in the memory dump, as well as the termination behavior after execution, it is

believed that these binaries may act as injectors similar to the binary “boom.exe”.

Table 5 summarizes the activities observed during stage 2. Activities that were manually

conducted, i.e., downloading the file “foto.scr” are not included.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 35
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Source Alias C&C Protocol Port Purpose
IRC #biz abc - divshare.com/208.100.16.103 TCP/HTTP 80 Download/execute binary
divshare.com - st4.divshare.com/208.100.16.112 TCP/HTTP 80 Download binary

Table 5. Summary of the activities observed during Stage 2.

Stage 3 – While the infected host was still joined to the IRC channel “#biz abc”,

an IRC user (username) “java” from a different IRC channel/host “@jobs” changed the

topic of the IRC channel “#biz”. This is denoted in the capture below with “java@jobs

TOPIC #biz”. The TOPIC command/channel operation is used to view or change a

channel’s topic (Kalt (A), 2000). In this case, the change includes a URL to download a

binary file. The binary file name has been eradicated due to the inappropriate language

used to name the binary file.

As observed in Stage 2, the reporting mechanism through the IRC channel

“#spread” is present. Although the binary file download was initiated as seen in the

below capture, the execution of that binary failed (third PRIVMSG above). It is noted

that the size of the download binary is 1KB (second PRIVMSG above) indicating an

erroneous download. The reason for such an erroneous download is that the link on

which the traffic was captured is censored and prohibits explicit content from being

viewed/downloaded. Due to the inappropriate binary name, the file was considered as

explicit material, hence, it was blocked from being correctly downloaded.

In order to maintain the flow of events and continue the analysis, the binary file

was manually downloaded and executed on the behalf of the username “java”. The file

name has been eradicated due to the inappropriate language.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 36
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Upon executing the binary “f***.exe”, it spawned over 470 processes with the

name “flashapp.exe”. As a result, CPU utilization reached 100% and testing machine

became irresponsive.

The first network activity observed after execution is a DNS query to the domain

“team.immsky.de”. The DNS response returned three resource records for the queried

domain with a low TTL of 6 minutes for each resource record.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 37
!

Yaser!Mansour,!ymansour@outlook.com! ! !

It is worth noting that the last resource record returned from the DNS response

above has the same IP address of the domain “h1479562.stratoserver.net”. This is the

same domain that was queried in Stage 1 to initiate the session to the IRC channel “#biz

abc”. Following the DNS response, the infected host initiated a TCP IRC session over

port 81 to IP address 98.158.179.127. The IRC session was initiated by setting a

connection password through the PASS IRC command.

!

In this particular instance, the PASS command was passed a file stored on the

local disk at “C:\Users\Olympus\AppData\Local\Temp\” with the name “adobe2.tmp”.

This file was dropped by the alias “flashapp.exe” and its contents are as follows

The IRC session continued by joining the IRC channels “#n jobs”, “#test1”, and

“#test2”.

From the capture above, the channel “#test1” instructed a download of a binary

file with the name “sp”. Channel “#test2” instructed a download of another binary file

with the name “omg”. Finally, the username “h” from the two channels/hosts “#bossman”

and “#jobs” – same channel as the username “java” – sends two private messages to the

IRC channel “#n jobs” containing URL to a binary file with the name “trafic.exe”. As

noted, the first two binaries are hosted at “divshare.com”, while the binary “trafic.exe” is

hosted at “topcongo.be”; the same host of the binary “f***.exe” downloaded earlier.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 38
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Earlier in Section 3.2.1, the resemblance observed to the Dorkbot variant was

briefly discussed. The suspected resemblance was strongly tightened upon executing the

binary file “sp”. The execution resulted in a DNS query to the domain “f.eastmoon.pl”;

the same domain observed during the analysis of the Dorkbot variant at Section 3.1.

Another evidence of resemblance is that the host running the “sp” binary attempts to join

the IRC channel “#sp yap” over TCP port 9000 which has also been identified earlier in

Section 3.1. However, the join failed since the IRC channel is sinkholed by CERT

Polska.

Later on, the IRC channel “#n jobs” reports an error and the infected host exists.

Afterwards, the infected host rejoins the IRC channels “#n jobs”, “#test1”, “#test2”, in

addition, channel “#test3”. The rejoins were accompanied with the same download URLs

of binaries “sp”, “omg”, and “trafic.exe”.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 39
!

Yaser!Mansour,!ymansour@outlook.com! ! !

During the session, the use of the IRC channel mode (+o) was observed. This

mode is used to modify the assignment of channel operator “chanop” privileges (Kalt

(A), 2000) over an IRC channel. The observed modifications involved assigning

“chanop” privileges to the nickname/username “hh” on channels “#n jobs” and “#test 3”.

At this point, three binaries are downloaded, namely, “sp” which behaves similar

to the Dorkbot variant, “omg”, and “trafic.exe”. The binary file “omg” is discussed in

Section 3.2.3.

When the binary “trafic.exe” was executed, it spawned a child process with the

name “sms.exe”. No network activities were observed while executing this binary.

However, interactions with the host were observed. For instance, a subsequent execution

of the NetSh command. Specifically, the below registry key was manipulated to add an

entry for the “sms.exe” binary, enabling itself through the local firewall.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 40
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Another notable interaction is the modification of the startup page of at least

Internet Explorer to point to the below URL.

Basically, this URL acts as a redirector landing page. The redirection behavior

observed during the analysis is depicted in Figure 11.

http://fbdirecto.net/1/ http://goo.gl/G9QTq http://allstartpage.com

cybertech<article.com

topsearcharticle.info

OR

Figure 11. Observed fbdirecto.net redirection model.

According to a Sucuri report (Sucuri, 2013), the website “hxxp://fbdirecto.net/1/”

runs an outdated version of WordPress, and that the site exhibits suspicious conditional

redirection behavior, which Sucuri refers to as “htaccess malware” (Dede, 2010).

To recap the network activities observed so far, a summary table is provided

below. After discussing the binaries “sp” and “trafic.exe”, Stage 3 concludes with the

analysis of the remaining binary “omg”.

Source Alias C&C Protocol Port Purpose
IRC java@jobs
#biz abc - topcongo.be/213.186.33.19 TCP/HTTP 80 Download binary

“f***.exe”

f***.exe flashapp.exe team.immsky.de DNS 53

f***.exe flashapp.exe team.immsky.be/98.158.179.127 TCP/IRC 81 Join IRC #n jobs,
#test1, #test2, #test3

IRC #test1 -
divshare.com,
st4.divshare/208.100.16.103,
208.100.16.112

TCP/HTTP 80 Download binary
“sp”

IRC #test2 -
divshare.com,
st4.divshare/208.100.16.103,
208.100.16.112

TCP/HTTP 80 Download binary
“omg”

IRC PRIVMSG
h@bossman #n,
h@jobs #n

- topcongo.be/213.186.33.19 TCP/HTTP 80 Download binary
“trafic.exe”

IRC #test3 - topcongo.be/213.186.33.19 TCP/HTTP 80 Download binary
“trafic.exe”

Binary sp sp f.eastmoon.pl DNS 53

Binary sp sp f.eastmoon.pl/148.81.111.111 TCP/IRC 9000 Join IRC #sp yap

trafic.exe sms.exe - - - -

Table 6. Summary of the activities observed during Stage 3.(

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 41
!

Yaser!Mansour,!ymansour@outlook.com! ! !

3.2.3. Malware and the abuse of the RELOAD Protocol
The REsource LOcation And Discovery protocol is defined by the IETF (Jennings

et al., 2013) as “a peer-to-peer (P2P) signaling protocol for use on the Internet. A P2P

signaling protocol provides its clients with an abstract storage and messaging service

between a set of cooperating peers which form the overlay network.”

It is out of scope to cover the finer details of the RELOAD protocol in this paper.

Of specific interest to this case study, is the mechanisms used by the RELOAD protocol

to achieve transport reliability. This is achieved through the use of Framing Headers

(FH) within the Forwarding and Link Management Layer of the protocol, to wrap

exchanged messages (FramedMessage). Thus, quick detection of link failures can be

achieved. A FramedMessage is defined in Figure 12 (Jennings et al., 2013).

Figure 12. FramedMessage definition in the RELOAD Protocol as defined in the standard.

The Forwarding and Link Management Layer is responsible for maintaining

connections and delivering messages among peers within the RELOAD overlay network.

Depending on the value of the FramedMessageType, the fields in the PDU will be

determined to indicate if the message is data or an acknowledgment. For example, if the

PDU is of type “ack”, then the PDU is an acknowledgment and will contain the

ack_sequence – the sequence number of the message being acknowledge – and

received fields.

 The introduction to the RELOAD protocol is necessary as it has been observed to

be abused by the binary “omg” discussed towards the end of section 3.2.2.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 42
!

Yaser!Mansour,!ymansour@outlook.com! ! !

The binary file “omg” has at least two aliases when executed. Namely,

“google081250.exe” and “mdm.exe”.

For example, when the file “google081250.exe” was executed, it spawned an alias

process with the name “mdm.exe”. In one instance, the DNS query to the domain “wifi-

usbx.me” returned five resource records with a TTL of 7 minutes and 29 seconds for each

record. In a second instance, the execution of the same binary resulted in the same DNS

query and resource records, however, the TTL is10 minutes for each record.

Another DNS response of type PTR (domain pointer) to the domain

“h11604802.stratoserver.net” and IP address of 85.214.127.253 was also observed.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 43
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Later in the capture, two consecutive TCP sessions over port 1986 were

established between the infected host and IP addresses of 87.106.83.47, and

85.214.127.253, respectively. It is worth noting that the IP address 87.106.83.47 does not

associate with any resource record of the observed DNS responses. This may be

indicative of a P2P session. After the 3-way handshake, several TCP packets with were

exchanged. Most of these packets contained 15 bytes of payload, except for three packets

with a payloads of 2, 5 and, 47 bytes respectively (excluding the acknowledgments).

1
2

3

4
5
6
7
8
9
10

The last six packets exchanged (������������������between the infected client and

the server in the capture above are RELOAD Framing packets. In this context, a Framing

Header and RELOAD Framing packet are used interchangeably.

 Examining byte offset 0 of the payload of the first two RELOAD Framing packets

(�,�) reveals the value of 0x81 = 129 = FramedMessageType ack(129).

FramedMessageType-= -ack(129)

The observed REALOD Framing packets are basically acknowledgements to

messages received by either ends. According to the standard, “When the receiver receives

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 44
!

Yaser!Mansour,!ymansour@outlook.com! ! !

a message, it SHOULD immediately send an ACK message” (Jennings et al., 2013). This

raised the possibility that the very first four TCP packets observed (������
���) constitute

the messages themselves being exchanged between the infected client and the server.

Based on this, the payload of packets (������was examined. In this case, byte offset 0 of

the payload of each packet (������contained the value of 0x80 = 128 =

FramedMessageType data(128).

FramedMessageType-= -data(128)

The same behavior was also observed in sessions to IP addresses 85.214.127.253,

217.160.123.192, and 37.123.118.4. The last two IP addresses were also not associated

with any DNS query or response.

 The capture below examines the ack_sequence, received, and Acked Frames

fields of an RELOAD Framing packet sent from the infected host (10.10.10.128).

To recap, the ack_sequence holds the sequence number of the message being

acknowledged. The sequence number in the capture above is either higher (server) or

lower (infected client) than any of the sequence numbers of the actual TCP packets

exchanged. This could be an indication that the wrapped sequence number(s) and

acknowledgments may not belong to the same current session. Instead, they may belong

to a different TCP session between two different peers within a RELAOD Overlay

Instance. Also, all of the RELOAD Framing packets initiated from the external IP

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 45
!

Yaser!Mansour,!ymansour@outlook.com! ! !

addresses (but not the infected host) contained the same values of the ack_sequence,

received, and Acked Frames.

The observed network behavior, combined with the standard (Jennings et al.,

2013) description of a RELOAD Overlay Instance suggest that the infected host may

have been joined to an existing overlay instance. In This case, the infected host would act

as a peer, possibly routing messages to other peers (or infected hosts, for example, IP

addresses 217.160.123.192, and 37.123.118.4). The RELOAD protocol may also have

been used as a mechanism for C&C (for example, IP address 85.214.127.253). However,

it is unclear how peers in an overly instance would negotiate Node-IDs and the overlay

algorithm in use. Such negotiation was not observed during the capture.

The malware also interacts with the host operating system. Similar to the

“sms.exe” – discussed towards the end of Section 3.2.2 – the “mdm.exe” also modifies

various registry keys, including the firewall, start page, and its persistence method (note

the misspelling of the “firewall” word).

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 46
!

Yaser!Mansour,!ymansour@outlook.com! ! !

From the memory dump of the “mdm.exe” file, it appears that it also targets

several social networks. References to Yahoo IM, Facebook, Google Talk, and ICQ were

found in the memory dump. A sample of the memory dump shows the portion related to

Facebook chat (note the Facebook’s CSRF/XSS tokens fb_dstg and post_form_id)

Worms targeting Facebook are not new. In (Jean, 2010), several vulnerabilities in

Facebook CSRF and XSS methods were identified by the author. In fact, exploiting these

vulnerabilities was demonstrated by the author through the creation of worms that took

advantage of such vulnerabilities to propagate through the social network.

To conclude Stage 3, Table 7 summarizes the network activities observed.

Source Alias C&C Protocol Port Purpose
omg google081250.exe/mdm.exe wifi-usbx.me DNS 53
omg google081250.exe/mdm.exe h1604802.stratoserver.net DNS 53

omg google081250.exe/mdm.exe h1604802.stratoserver.net/
85.214.127.253 TCP/RELOAD 1986

omg google081250.exe/mdm.exe
87.106.83.47,
217.160.123.192,
37.123.118.4

TCP/HTTP 1986

Table 7. Cont. summary of the activities observed during Stage 3.(

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 47
!

Yaser!Mansour,!ymansour@outlook.com! ! !

3.2.4. Additional Observations
Although the profiles hosting the malicious binaries on 4shared were not

discussed, a number of observations are worth noting. For instance, one of the profiles

does not only host the “hotimg.facebook.pif” file, but also hosts several copies of other

malicious binaries, such as “instagram-album.exe” and “skypefbimg.pif”. At the time of

writing, the profile was still serving these programs. Another observation is the number

of profile views/downloads tracked by the 4shared website. Although these numbers may

not reflect the actual number of infections, still, the numbers are alarming.

Following the initial infection and the joining of the IRC channels, over 20

executables were collected from the infected system. This includes executables

downloaded through the IRC, manually downloaded, as well as the aliases created from

executing the original malware files.

3.3. Case Studies Summary
The analysis performed during the Dorkbot variant worm revealed the magnitude

of the incident and its consequences. The extracted information regarding the worm’s

infection and propagation techniques, as well as its objectives served as a repository for

the response process. Firstly, the information facilitated the categorization of the worm’s

network activities – IRC C&C, CTS and STC infection methods, and Bitcoin mining.

This allowed the creation of sixteen new Snort (Sourcefire, 2001) IDS signatures (VRT

2013, April 16) to detect every possibility of the worm’s existence on the network.

Secondly, the integration of this new knowledge into the system allowed for minimizing

the impact of the incident on business operations. Thirdly, the resulting information also

aided in developing heuristic detections for the malware by the antivirus vendor.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 48
!

Yaser!Mansour,!ymansour@outlook.com! ! !

The activities analyzed from the Steckt/Neeris IRCbots case study provided a

means of proactivity in defending the enterprise from future infections by these worms.

Since the framework is already in place, the integration of the extracted knowledge into

the system was rather seamless. This included the development of nine new Snort

(Sourcefire, 2001) IDS signatures (VRT 2013, December 17) to trigger on the worms’

network activities. Although these infections were not detected on the enterprise network,

the inclusion of the analyzed data provides the opportunity to anticipate and

automatically react upon future infections. Thus, limiting the consequences resulting

from these infections.

4. Measuring Effectiveness
4.1. Solution vs. Problem Domain

The system discussed in this paper is a response to the challenges presented in

Section 2. Provided with the case studies discussed in Section 3, how effective was the

system in aligning its goals with regards to the problem domain and case studies?

Consider the below interrelated and continuous manual processes, and the

hypothetical but realistic time periods required to complete each process. These processes

and their associated timings are used throughout the discussion of this section.

Process 1: Alert (IP Address) $ Network Administration (separation of duties)

$ IP to MAC to Port Verification (Switches) $ Authentication logs lookup (hostname)

$ Match to end-user and location $ Host Isolation (if/when required) ~ 20 minutes.

Process 2: Alert (message) $ Researching Online Resources $ Infection and

Response Assessment $ Process 1 $ Assemble IoCs and Tools $ Contact User $

Disinfect Client ~ 45 minutes.

Process 3: 0-day Infection (potential propagation) $ Initial Malware Analysis $

IDS Signatures Development and Integration $ Process 1 $ Assemble IoCs and Tools

$ Contact User(s) ~ 2 hours.

Challenge 1: Identifying outliers generating malicious network activities is

considered one of the initial quests in the analyst’s response process. This is particularly

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 49
!

Yaser!Mansour,!ymansour@outlook.com! ! !

important and challenging when the environment is diverse and dynamic. Hypothetically,

if 10 malware incidents in average are encountered per month, then conducting Process 1

would cost 5 working days (assuming a working day is 8 hours) over a year. With the

predefined and automated knowledge collection in place, this cost is eliminated for both,

the networking and security teams. Also, the time required to initiate the response process

is reduced 20 minutes per incident. The cost savings become more prominent in cases

where 3 hosts are infected with 3 different malware within 1 hour. In the case of Dorkbot

variant, the AHU identification was immediate as soon as the infected host connected to

the network, yielding to seconds for conducting Process 1.

Challenge 2/3: the prebuilt malware knowledgebase storing information

prioritizing malware severity as well as prepares the analyst to understand and react to

malware before they are even encountered. In the case of Dorkbot variant, the time spent

conducting Process 2 yielded no actionable items at the time of the incident due to the

lack of public information about the variant. This can be translated as losing 45 minutes

in the infection and response lifecycle. Such lost time could have been utilized to prevent

further propagation. Through Process 3 (and subsequently Process 1), the extracted

knowledge was generalized and applied to all infected hosts automatically and

dynamically. Another cost savings can be inferred in the case of the Steckt/Neeris worms.

Since their knowledgebase records are already pre-built, the severity and response actions

are predetermined. If a host is to be found infected with these worms, the knowledge and

the following actions (i.e., isolation, eradication) are applied automatically.

Challenge 4: Due to its dependency on solving Challenge 1/2/3, the time

required to isolate an infected host can span to over 3 hours in a worst case scenario.

This time period can be sufficient enough to allow the malware perform its damaging

actions. For both case studies discussed, the dependents are already solved. Hence, the

isolation can be effectively and automatically performed eliminating the costs associated

with conducting the processes hierarchy from scratch. Eventually, the solutions to the

previous challenges implicitly lead to solving the issues associated with Challenge 6.

This is evident in the Dorkbot variant case. At the time of discovering the initial

infection, no prior knowledge about the malware and its propagation capabilities was

known. Once Process 3 was completed, all of the extracted knowledge was fed into the

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 50
!

Yaser!Mansour,!ymansour@outlook.com! ! !

system. This led to the automated identification and isolation of over 34 hosts as soon as

they joined the network. This step was crucial to prevent further propagation of the

malware to any production servers and contain the infection to clients only, without

allowing clients to infect production servers. Otherwise, clients would constantly get

infected (through STC) even if they have been disinfected earlier.

Challenge 5: The summarized knowledge in the procedural notifications about

infected hosts is tailored to accommodate the skills and functions of the helpdesk team.

Thus reducing the time required to respond and troubleshoot end-users complaints related

to suspicious computer behaviors. The ability to eradicate malware infections without

necessarily having to re-image computers on per incident is considered one of the major

advantages. This does not only impact helpdesk teams, but also end-users by eliminating

almost 1 hour and a half of re-imaging time, thus, improving productivity for both.

The proactivity enforced through the proposed system can help mitigate the

consequences resulting from future malware infections. This is achieved through the

well-informed, early response actions built-in within the system. Steckt/Neeris worms

discussed in the second case study provide a good example. The extracted knowledge and

developed signatures from the analysis were fed into the system to serve as an abstraction

layer. This layer eliminates the costs associated with the response processes as if the

malware was previously unknown. In this manner, all of the information required to

detect, isolate, and eradicate future infections is already pre-built and ready to use.

Combined with the automated and dynamic actions on detection, disruptions to business

and operational continuity can be greatly minimized.

4.2. Additional Advantages
One area where the proposed system can be utilized is Peer-to-Peer (P2P) usage

tracking and actions. Although P2P networks have a history of hosting malicious

contents, the emphasis here is on DMCAs; short for Digital Millennium Copyright Act.

DMCAs can be financially destructive to an organization due lawsuits. Violations for

downloading copyrighted material usually arrive long after the fact. This requires

searching through and correlating a considerable number of historical logs, which can be

difficult and extremely time consuming, guaranteed that older logs are retained for that

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 51
!

Yaser!Mansour,!ymansour@outlook.com! ! !

particular time period. By correlating P2P alerts with the prebuilt contextual knowledge,

one can keep track of P2P usage. In this case, not only the storage footprint will be lower

since summarized logs may only be stored, but also will be easier and faster to search

since it is already correlated.

BYOD and mobile malware are two emerging areas attracting attention. Due to

their ubiquitous nature, managing such devices is an ongoing effort which can be

challenging. From a malware detection and response perspective, it is important to be

able to identify devices infected with malware (including mobile malware) once they are

on the enterprise network. Using the existing knowledge about users and mobile

malware, device owners can be identified and actions based on the type of infection can

also be automated. For example, an Android device infected with Plankton malware can

be correlated with the owner’s network authentication and then the device can be

automatically isolated to the quarantine VLAN. The same process discussed in this paper

can be adapted to achieve the same response actions. Once isolated, the user is presented

with the captive portal and the IT team is notified of the action.

5. Future Work
The system was designed to be modular and pluggable. In this manner, new

modules or plugins can be added without major disruptions to the system’s workflow

process. Another advantage is the ability to update a component (i.e., logging and

correlation) of the system without affecting other components (i.e., detection).

One of the major upgrades considered for the proposed system relates to the

logging and correlation component. Specifically, the integration of Bro IDS logs and

NetFlow data through SiLK. For example, when an infected host is detected, the system

would automatically fetch Bro IDS logs (HTTP, DNS, SSL, etc.) and the SiLK NetFlow

data for that particular host based on 1) predefined queries against the logs, and 2) a

predefined, but updatable time threshold. The time threshold can be, for example, one

minute worth of Bro and SiLK logs prior to and after the infection to limit the amount of

returned information. The analyst may still need to access these logs manually for further

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 52
!

Yaser!Mansour,!ymansour@outlook.com! ! !

investigating the incident, however, the knowledge added reinforces the analyst’s initial

incident response decisions.

A second future enhancement converges with the logging component and the

investigative activities during response. This enhancement consists of developing a set of

plugins that automate the ability to remotely execute scripts on an infected host to collect

IoC information. For example, when an infected Windows host is detected, the logging

component is triggered to automatically execute a PowerShell script against the infected

machine. Such script can be tailored to obtain current running processes and their

associated network information. Another script may be used to dump the current state of

registry hives after the infection, and then compare these against a stored baseline registry

hives. These add value to the forensics process once a host is detected and isolated.

In certain cases, a specific malware may be well known and documented in terms

of its behavior and eradication techniques. In such cases, remote and automated

deployments of eradication tools may be feasible. This can be valuable in incidents where

a considerable number of hosts are infected with a self-propagating malware. Take for

example the Dorkbot variant discussed in this paper. A single infection was sufficient

enough to understand the malware behavior and its eradication tools. Thus, the

knowledge extracted from this particular incident can be safely generalized to the other

hosts exhibiting the same Dorkbot variant behavior. This should allow for the rapid

deployment of the tool(s) identified in the malware knowledgebase automatically.

6. Conclusion
Most new malware specimens discovered are more sophisticated and complex

than their predecessors. Such complexity not only applies to the obfuscation and anti-

evasion techniques built-in, but also applies to the economics and purposes driving their

distribution. This growth in complexity has proven to be capable of hindering the CIA

triad of an organization’s information security model. Notably, the malware specimens

analyzed in this work share common characteristics, though, they are independently

different and were encountered at different time frames. Namely, characteristics such as

1) utilization of public cloud storage services to host configuration files and malicious

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 53
!

Yaser!Mansour,!ymansour@outlook.com! ! !

binaries, and 2) utilization of IRC as a mechanism for C&C communication. The

adoption of such techniques can be regarded to attempts to thwart detection and blocking

of suspicious domains and IP addresses used by the malware, and at the same, provide

easiness in controlling infected bots. The abuse of the RELOAD protocol to potentially

build a P2P botnet, as well as a mechanism for C&C communication is another example

of elevating the complexity level to evade detection.

The realization of complex malware has led to the development of proactive and

defensive measures to streamline such complexity. However, the absence of predefined

and ready-to-use contextual knowledge about the monitored network and malware

behaviors can be problematic. The inability to immediately make informed response

decisions to malware infections can obstruct the response process as a whole, hence,

negatively impacting individuals and business operations alike.

The framework discussed in this paper realizes the involved complexity and its

consequences. In particular, the complexity layer added by the malware specimens

analyzed during the study has been dissected. Leading to the development and publishing

of a total of 25 new Snort IDS signatures covering both cases studies. Such task acts as

the stimulus enabling the various components of the framework to mutually contribute

into minimizing the time and steps required between detection and response to malware

incidents. This minimization is further enforced through the automation of response

actions built on top of the pre-correlated knowledge. As such, incidents can be

dynamically addressed as early as detection, regardless of the nature of the monitored

network. In addition, the summarized procedural guidance provided upon detection

facilitates smooth incident response progression among response teams. Such proactive

implementation has proven to be advantageous in malware propagating incidents, as well

as in preparedness for future infection incidents. Ultimately leading to not only reduced

response times, but also minimized risks of disrupting operations, hence, positively

impacting individuals and business continuity.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 54
!

Yaser!Mansour,!ymansour@outlook.com! ! !

7. References
Adler, M., Boutell, T., Bowler, J., Brunschen, C., Costello, A., Crocker, L., Dilger, A.,

Fromme, O., Gailly, J., Herborth, C., Jakulin, A., Kettler, N., Lane, T., Lehmann,

A., Lilley, C., Martindale, D., Mortensen, O., Pickens, K., Poole, R., Randers-

Pehrson, G., Roelofs, G., Schaik, W., Schalnat, G., Schmidt, P., Stokes, M.,

Wegner, T., Wohl, J. (2003, November 10). Portable Network Graphics (PNG)

Specification, Second Edition. Retrieved from: http://www.w3.org/TR/PNG/.

Batchelder, D., Blackbird, J., Felstead, D., Henry, P., Hope, B., Jeff, J., Kulkarni, A.,

Lauricella, M., McRee, R., Mills, C., Ng, N., Pecelj, D., Penta, A., Rains, T.,

Sekhar, V., Stewart, H., Thomlinson, M., Thompson, T., Zink, T. (2013, October

30). Microsoft Security Intelligence Report, SIRv15. Retrieved from:

http://download.microsoft.com/download/5/0/3/50310CCE-8AF5-4FB4-83E2-

03F1DA92F33C/Microsoft_Security_Intelligence_Report_Volume_15_English.p

df.

Baykal, A. (2013, October 30). CIS Cyber Alert – Cryptolocker Indicators [Web blog].

Center of Internet Security. Retrieved from: https://blog.cisecurity.org/cis-cyber-

alert/.

Bitcoin Wiki. (2013, October 31). Protocol Specification. Retrieved from:

https://en.bitcoin.it/wiki/Protocol_specification.

Booch, G. (1994). Object-Oriented Analysis and Design with Applications. (2nd Ed.).

Redwood, CA: The Benhamin/Cummings Publishing Company, Inc.

Boutell, T., et al. (1997, March). PNG (Portable Network Graphics) Specification,

Version 1.0. Network Working Group. Retrieved from:

http://tools.ietf.org/html/rfc2083.

Brooks, F. (1987). No Silver Bullet Essence and Accidents of Software Engineering.

Computer, IEEE Computer Society, 20(4), 10-19. doi:

http://dx.doi.org/10.1109/MC.1987.1663532.

DARPA (2013, October 22). Cyber Grand Challenge (CGC): Automated Cyber

Reasoning. Retrieved from: https://dtsn.darpa.mil/cybergrandchallenge/DARPA-

BAA-14-05.pdf.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 55
!

Yaser!Mansour,!ymansour@outlook.com! ! !

DD-WRT. (2005). DD-WRT unleash your router [Software]. Retrieved from:

http://www.dd-wrt.com/site/index

Dede, D. (2010, April 13). Conditional Redirects (or the htaccess malware) [Web blog].

Retrieved from: http://blog.sucuri.net/2010/04/conditional-redirects-or-the-

htaccess-malware.html.

Elisan, C. (Performer) (2013, October 18). Malware Automation [Web]. BSides Raleigh.

Retrieved from:

http://www.irongeek.com/i.php?page=videos/bsideslasvegas2013/2-2-3-malware-

automation-christopher-elisan.

Goel, A., Feng, W., Feng, W., & Maier, D. (2007, April 11). Automatic high-

performance reconstruction and recovery. Computer Networks: The International

Journal of Computer and Telecommunications Networking, 51(5), 1361-1377.

doi: http://dx.doi.org/10.1016/j.comnet.2006.09.013.

Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C., Levchenko, K.,

Mavrommatis, P., McCoy, D., Nappa, A., Pitsilidis, A., Proves, N., Rafique, M.,

Abu Rajab, M., Rossow, C., Thomas, K., Paxon, V., Savage, S., & Voelker, G.

(2012, October 06). In B Elisa (Chair). Manufacturing Compromise: The

Emergence of Exploit-as-a-Service. In CCS '12 Proceedings of the 2012 ACM

Conference on Computer and Communications Security (pp. 821-832). doi:

http://dx.doi.org/10.1145/2382196.2382283.

Gu, G., Porras, P., Yegneswaran, V., Fong, M., & Lee, W. (2007, August 08).

Bothunter: Detecting Malware Infection Through IDS-Driven Dialog Correlation.

In SEC ’07 Proceedings of the 16th USENIX Security Symposium (pp. 167-182).

Retrieved from:

https://www.usenix.org/legacy/event/sec07/tech/full_papers/gu/gu.pdf.

Jean, J. (2010, October 05). Facebook CSRF abd XSS vulnerabilities | Destructive worms

on a Social Network [Web blog]. Retrieved from: http://www.john-

jean.com/blog/advisories/facebook-csrf-and-xss-vulnerabilities-destructive-

worms-on-a-social-network-350.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 56
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., & Schulzrinne, E. (2013, February

24). REsource LOcation And Discovery (RELOAD) Base Protocol. Retrieved

from: http://tools.ietf.org/html/draft-ietf-p2psip-base-26.

Johnson, J. (2013, August 20). Implementing Active Defense Systems on Private

Networks. Retrieved from: https://www.sans.org/reading-

room/whitepapers/attacking/implementing-active-defense-systems-private-

networks-34312.

Kalt, C. (A). (2000, April). Internet Relay Chat: Client Protocol. Network Working

Group. Retrieved from: http://tools.ietf.org/html/rfc2812.

Kalt, C. (B). (2000, April). Internet Relay Chat: Architecture. Network Working Group.

Retrieved from: http://tools.ietf.org/html/rfc2810.

Kaspersky. (2013, June 13). The Evolution of Phishing Attacks, 2011-2013. Kaspersky

Labs. Retrieved from:

http://media.kaspersky.com/pdf/Kaspersky_Lab_KSN_report_The_Evolution_of_

Phishing_Attacks_2011-2013.pdf.

Kimberly. (2013, October 28). Analysis of the PHP.net Compromise [Web blog].

Retrieved from: http://stopmalvertising.com/malware-reports/analysis-of-the-

php.net-compromise.html.

Kennedy, D. (Performer) (2013, October 18). Advanced Evasion Techniques – Pwning

the Next Generation Security Products [Web]. BSides Raleigh. Retrieved from:

http://www.irongeek.com/i.php?page=videos/hack3rcon4/01-advanced-evasion-

techniques-pwning-the-next-generation-security-products-david-kennedy.

Kirk, A. (2013, February 25). Life Cycle and Detection of an Exploit Kit [Web blog].

Vulnerability Research Team (VRT), Retrieved from:

http://labs.snort.org/blogfiles/LifeCycleOfAnExploitKit.pdf.

Li, H. (2013, November 05). McAfee Labs Detects Zero-Day Exploit Targeting Microsoft

Office [Web blog]. Retrieved from: http://blogs.mcafee.com/mcafee-labs/mcafee-

labs-detects-zero-day-exploit-targeting-microsoft-office-2.

Mansour, Y., & Mustafa, S. (2011, April 06). Assessing Internal Software Quality

Attributes of the Object-Oriented and Service-Oriented Software Development

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 57
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Paradigms: A Comparative Study. Journal of Software Engineering and

Applications, 4(4), 244-252. doi: http://dx.doi.org/10.4236/jsea.2011.44027.

Mimoso, M. (2013, February 20), iOS Developer Site at Core of Facebook, Apple

Watering Hole Attack [Web blog]. Retrieved from: http://threatpost.com/ios-

developer-site-core-facebook-apple-watering-hole-attack-022013.

MMPC – Microsoft Malware Protection Center. (2010, April 30). Win32/Zbot. Updated:

Dec 2013. Retrieved from:

http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=

Win32%2fZbot.

MMPC – Microsoft Malware Protection Center. (2013, May 02). Backdoor:

Win32/Vawtrak.A. Retrieved from:

http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=

Backdoor:Win32/Vawtrak.A.

Moran, N., Vashisht, S., Scott, M., & Haq, T. (2013, November 10). Operation

Ephemeral Hydra: IE Zero-day Linked to DeputyDog Uses Diskless Method

[Web blog]. Retrieved from: http://www.fireeye.com/blog/technical/cyber-

exploits/2013/11/operation-ephemeral-hydra-ie-zero-day-linked-to-deputydog-

uses-diskless-method.html.

MS Dev - Microsoft Dev Center – Desktop. (2013, December 05), File Management

Structures. Retrieved from: http://msdn.microsoft.com/en-

us/library/windows/desktop/aa364217(v=vs.85).aspx.
MS-SMB. (2013, October 25), Server Message Block (SMB) Protocol. Page 29.

Retrieved from: http://download.microsoft.com/download/9/5/E/95EF66AF-

9026-4BB0-A41D-A4F81802D92C/[MS-SMB].pdf.

Netfilter. (1999). Netfilter/iptables project [Software]. Retrieved from

http://www.netfilter.org/projects/iptables/index.html

Ramsbrock, D., Wang, X., & Jiang, X. (2008, September 15-17). A First Step Toward

Live Botmaster Traceback. RAID ’08 Proceedings of the 11th International

Symposium on Recent Advances in Intrusion Detection (pp. 59-77). doi:

http://dx.doi.org/10.1007/978-3-540-87403-4_4.

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 58
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Romang, E. (2013, February, 20). Facebook, Apple & Twitter Watering Hole Attack

Additional Information [Web blog]. Retrieved from:

http://eromang.zataz.com/2013/02/20/facebook-apple-twitter-watering-hole-

attack-additional-informations/.

Ross, J. (2010, February 03). Malware Analysis for the Enterprise. Blackhat DC 2010,

Washington, DC. Retrieved from: http://www.blackhat.com/presentations/bh-dc-

10/Ross_Jason/Blackhat-DC-2010-Ross-Malware-Analysis-for-the-Enterprise-

wp.pdf.

Russinovich, M., & Cogswell, B. (2013). Windows Sysinternals Process Explorer v15.40

[Software]. Retrieved from http://technet.microsoft.com/en-

us/sysinternals/bb896653.aspx.

Stamp, M. (2011). Information Security Principles and Practice. (2nd Ed.). New Jersey,

NJ: John Wiley & Sons. Inc.

Tangwongsan, S. & Pangphuthipong, L. (2007). A Model of Network Security with

Prevention Capability by Using Decoy Technique. International Journal of

Computer, Information Science and Engineering, 1(5). Retrieved from

http://waset.org/publications/10459.

Tcpdump. (2013). Tcpdump & libpcap [Software]. Retrieved from

http://www.tcpdump.org/

Telerik. (2013). Fiddler web debugging proxy [Software]. Retrieved from

http://fiddler2.com/

Thomlinson, M. (2013, February 22). Recent Cyberattacks [Web blog]. Microsoft

Security Response Center. Retrieved from:

http://blogs.technet.com/b/msrc/archive/2013/02/22/recent-cyberattacks.aspx.

Schneier, B. (2000, March 15). Software Complexity and Security [Web blog]. Retrieved

from: https://www.schneier.com/crypto-gram-0003.html.

Schneier, B. (2013, March 01). Phishing Has Gotten Very Good [Web blog]. Retrieved

from: www.schneier.com/blog/archives/2013/03/phishing_has_go.html.

Sourcefire. (2001). Snort [Software]. Retrieved from: http://snort.org/.

Sucuri SiteCheck Report. Generated: 2013, December 20. Retrieved from:

http://sitecheck.sucuri.net/results/fbdirecto.net/1/

An Early Malware Detection, Correlation, and Incident Response System with Case Studies! 59
!

Yaser!Mansour,!ymansour@outlook.com! ! !

Verizon (2013). Data Breach Investigations Report. Retrieved from:

http://www.verizonenterprise.com/resources/reports/rp_data-breach-

investigations-report-2013_en_xg.pdf.

VRT (2013, April 16). Sourcefire VRT Certified Snort Rules Update for 04/16/2013

[Web blog]. http://blog.snort.org/2013/04/sourcefire-vrt-certified-snort-

rules_16.html

VRT (2013, December 17). Sourcefire VRT Certified Snort Rules Update for 12/17/2013

[Web blog]. http://blog.snort.org/2013/12/sourcefire-vrt-certified-snort-

rules_17.html

Wireshark. (2013). Wireshark [Software]. Retrieved from http://www.wireshark.org/

Zeltser, L. (2011, October 25). How Security Companies Assign Names to Malware

Specimens [Web blog]. Retrieved from:

http://blog.zeltser.com/post/11935658159/malware-naming-approaches.

8. Acknowledgments
I would like to thank Judy Novak and Mike Poor for their tremendous efforts

delivering the SANS course SEC503: Intrusion Detection In-Depth.

Also, I would like to thank my supervisor; Angel Alonso Parrizas for his valuable

and thorough input and guidance throughout the process of writing this paper.

Finally, a special thanks to my employer, and specifically the Networking Group

for providing the appropriate work environment to learn, adapt, and apply, as well as

their cooperation and help.

!!

Last Updated: November 2nd, 2014

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS DFIRCON East 2014 Fort Lauderdale, FLUS Nov 03, 2014 - Nov 08, 2014 Live Event

SANS Sydney 2014 Sydney, AU Nov 10, 2014 - Nov 22, 2014 Live Event

SANS Korea 2014 Seoul, KR Nov 10, 2014 - Nov 15, 2014 Live Event

SANS Tokyo Autumn 2014 Tokyo, JP Nov 10, 2014 - Nov 15, 2014 Live Event

Pen Test Hackfest Washington, DCUS Nov 13, 2014 - Nov 20, 2014 Live Event

SANS London 2014 London, GB Nov 15, 2014 - Nov 24, 2014 Live Event

SANS Hyderabad 2014 Hyderabad, IN Nov 24, 2014 - Nov 29, 2014 Live Event

Healthcare Cyber Security Summit San Francisco, CAUS Dec 03, 2014 - Dec 10, 2014 Live Event

SANS Cyber Defense Initiative 2014 Washington, DCUS Dec 10, 2014 - Dec 19, 2014 Live Event

SANS Oman 2015 Muscat, OM Jan 03, 2015 - Jan 08, 2015 Live Event

SANS Security East 2015 New Orleans, LAUS Jan 16, 2015 - Jan 21, 2015 Live Event

SANS Brussels 2015 Brussels, BE Jan 26, 2015 - Jan 31, 2015 Live Event

SANS Dubai 2015 Dubai, AE Jan 31, 2015 - Feb 05, 2015 Live Event

SANS Cyber Defense San Diego 2014 OnlineCAUS Nov 03, 2014 - Nov 08, 2014 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=36160
http://www.sans.org/dfircon-east-2014
http://www.sans.org/link.php?id=34665
http://www.sans.org/sydney-2014
http://www.sans.org/link.php?id=34690
http://www.sans.org/korea-2014
http://www.sans.org/link.php?id=34705
http://www.sans.org/tokyo-autumn-2014
http://www.sans.org/link.php?id=36222
http://www.sans.org/sans-pen-test-hackfest-2014
http://www.sans.org/link.php?id=35805
http://www.sans.org/london-2014
http://www.sans.org/link.php?id=34950
http://www.sans.org/hyderabad-2014
http://www.sans.org/link.php?id=36735
http://www.sans.org/healthcare-summit-2014
http://www.sans.org/link.php?id=27534
http://www.sans.org/cyber-defense-initiative-2014
http://www.sans.org/link.php?id=35970
http://www.sans.org/oman-2015
http://www.sans.org/link.php?id=37647
http://www.sans.org/security-east-2015
http://www.sans.org/link.php?id=36600
http://www.sans.org/belgium-2015
http://www.sans.org/link.php?id=36610
http://www.sans.org/dubai-2015
http://www.sans.org/link.php?id=34890
http://www.sans.org/cyber-defense-san-diego-2014
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

