225 research outputs found

    Decoupling algorithms from schedules for easy optimization of image processing pipelines

    Get PDF
    Using existing programming tools, writing high-performance image processing code requires sacrificing readability, portability, and modularity. We argue that this is a consequence of conflating what computations define the algorithm, with decisions about storage and the order of computation. We refer to these latter two concerns as the schedule, including choices of tiling, fusion, recomputation vs. storage, vectorization, and parallelism. We propose a representation for feed-forward imaging pipelines that separates the algorithm from its schedule, enabling high-performance without sacrificing code clarity. This decoupling simplifies the algorithm specification: images and intermediate buffers become functions over an infinite integer domain, with no explicit storage or boundary conditions. Imaging pipelines are compositions of functions. Programmers separately specify scheduling strategies for the various functions composing the algorithm, which allows them to efficiently explore different optimizations without changing the algorithmic code. We demonstrate the power of this representation by expressing a range of recent image processing applications in an embedded domain specific language called Halide, and compiling them for ARM, x86, and GPUs. Our compiler targets SIMD units, multiple cores, and complex memory hierarchies. We demonstrate that it can handle algorithms such as a camera raw pipeline, the bilateral grid, fast local Laplacian filtering, and image segmentation. The algorithms expressed in our language are both shorter and faster than state-of-the-art implementations.National Science Foundation (U.S.) (Grant 0964004)National Science Foundation (U.S.) (Grant 0964218)National Science Foundation (U.S.) (Grant 0832997)United States. Dept. of Energy (Award DE-SC0005288)Cognex CorporationAdobe System

    Verified lifting of stencil computations

    Get PDF
    This paper demonstrates a novel combination of program synthesis and verification to lift stencil computations from low-level Fortran code to a high-level summary expressed using a predicate language. The technique is sound and mostly automated, and leverages counter-example guided inductive synthesis (CEGIS) to find provably correct translations. Lifting existing code to a high-performance description language has a number of benefits, including maintainability and performance portability. For example, our experiments show that the lifted summaries can enable domain specific compilers to do a better job of parallelization as compared to an off-the-shelf compiler working on the original code, and can even support fully automatic migration to hardware accelerators such as GPUs. We have implemented verified lifting in a system called STNG and have evaluated it using microbenchmarks, mini-apps, and real-world applications. We demonstrate the benefits of verified lifting by first automatically summarizing Fortran source code into a high-level predicate language, and subsequently translating the lifted summaries into Halide, with the translated code achieving median performance speedups of 4.1X and up to 24X for non-trivial stencils as compared to the original implementation.United States. Department of Energy. Office of Science (Award DE-SC0008923)United States. Department of Energy. Office of Science (Award DE-SC0005288

    Polyhedral+Dataflow Graphs

    Get PDF
    This research presents an intermediate compiler representation that is designed for optimization, and emphasizes the temporary storage requirements and execution schedule of a given computation to guide optimization decisions. The representation is expressed as a dataflow graph that describes computational statements and data mappings within the polyhedral compilation model. The targeted applications include both the regular and irregular scientific domains. The intermediate representation can be integrated into existing compiler infrastructures. A specification language implemented as a domain specific language in C++ describes the graph components and the transformations that can be applied. The visual representation allows users to reason about optimizations. Graph variants can be translated into source code or other representation. The language, intermediate representation, and associated transformations have been applied to improve the performance of differential equation solvers, or sparse matrix operations, tensor decomposition, and structured multigrid methods
    corecore