6,278 research outputs found

    Link updating strategies influence consensus decisions as a function of the direction of communication

    Full text link
    Consensus decision-making in social groups strongly depends on communication links that determine to whom individuals send, and from whom they receive, information. Here, we ask how consensus decisions are affected by strategic updating of links and how this effect varies with the direction of communication. We quantified the co-evolution of link and opinion dynamics in a large population with binary opinions using mean-field numerical simulations of two voter-like models of opinion dynamics: an Incoming model (where individuals choose who to receive opinions from) and an Outgoing model (where individuals choose who to send opinions to). We show that individuals can bias group-level outcomes in their favor by breaking disagreeing links while receiving opinions (Incoming Model) and retaining disagreeing links while sending opinions (Outgoing Model). Importantly, these biases can help the population avoid stalemates and achieve consensus. However, the role of disagreement avoidance is diluted in the presence of strong preferences - highly stubborn individuals can shape decisions to favor their preferences, giving rise to non-consensus outcomes. We conclude that collectively changing communication structures can bias consensus decisions, as a function of the strength of preferences and the direction of communication

    Collective decision making in dynamic environments

    Get PDF
    Abstract: Collective decision making is the ability of individuals to jointly make a decision without any centralized leadership, but only relying on local interactions. A special case is represented by the best-of-n problem, whereby the swarm has to select the best option among a set of n discrete alternatives. In this paper, we perform a thorough study of the best-of-n problem in dynamic environments, in the presence of two options (n=2). Site qualities can be directly measured by agents, and we introduce abrupt changes to these qualities. We introduce two adaptation mechanisms to deal with dynamic site qualities: stubborn agents and spontaneous opinion switching. Using both computer simulations and ordinary differential equation models, we show that: (i) The mere presence of the stubborn agents is enough to achieve adaptability, but increasing its number has detrimental effects on the performance; (ii) the system adaptation increases with increasing swarm size, while it does not depend on agents’ density, unless this is below a critical threshold; (iii) the spontaneous switching mechanism can also be used to achieve adaptability to dynamic environments, and its key parameter, the probability of switching, can be used to regulate the trade-off between accuracy and speed of adaptation

    Collective decision making in dynamic environments

    Get PDF
    Abstract: Collective decision making is the ability of individuals to jointly make a decision without any centralized leadership, but only relying on local interactions. A special case is represented by the best-of-n problem, whereby the swarm has to select the best option among a set of n discrete alternatives. In this paper, we perform a thorough study of the best-of-n problem in dynamic environments, in the presence of two options (n=2). Site qualities can be directly measured by agents, and we introduce abrupt changes to these qualities. We introduce two adaptation mechanisms to deal with dynamic site qualities: stubborn agents and spontaneous opinion switching. Using both computer simulations and ordinary differential equation models, we show that: (i) The mere presence of the stubborn agents is enough to achieve adaptability, but increasing its number has detrimental effects on the performance; (ii) the system adaptation increases with increasing swarm size, while it does not depend on agents’ density, unless this is below a critical threshold; (iii) the spontaneous switching mechanism can also be used to achieve adaptability to dynamic environments, and its key parameter, the probability of switching, can be used to regulate the trade-off between accuracy and speed of adaptation

    Collective decision making in dynamic environments

    Get PDF
    © 2019, The Author(s). Collective decision making is the ability of individuals to jointly make a decision without any centralized leadership, but only relying on local interactions. A special case is represented by the best-of-n problem, whereby the swarm has to select the best option among a set of n discrete alternatives. In this paper, we perform a thorough study of the best-of-n problem in dynamic environments, in the presence of two options (n= 2). Site qualities can be directly measured by agents, and we introduce abrupt changes to these qualities. We introduce two adaptation mechanisms to deal with dynamic site qualities: stubborn agents and spontaneous opinion switching. Using both computer simulations and ordinary differential equation models, we show that: (i) The mere presence of the stubborn agents is enough to achieve adaptability, but increasing its number has detrimental effects on the performance; (ii) the system adaptation increases with increasing swarm size, while it does not depend on agents’ density, unless this is below a critical threshold; (iii) the spontaneous switching mechanism can also be used to achieve adaptability to dynamic environments, and its key parameter, the probability of switching, can be used to regulate the trade-off between accuracy and speed of adaptation

    Mean Field Interactions in Heterogeneous Networks

    Get PDF
    In the context of complex networks, we often encounter systems in which the constituent entities randomly interact with each other as they evolve with time. Such random interactions can be described by Markov processes, constructed on suitable state spaces. For many practical systems (e.g. server farms, cloud data centers, social networks), the Markov processes, describing the time-evolution of their constituent entities, become analytically intractable as a result of the complex interdependence among the interacting entities. However, if the `strength' of these interactions converges to a constant as the size of the system is increased, then in the large system limit the underlying Markov process converges to a deterministic process, known as the mean field limit of the corresponding system. Thus, the mean field limit provides a deterministic approximation of the randomly evolving system. Such approximations are accurate for large system sizes. Most prior works on mean field techniques have analyzed systems in which the constituent entities are identical or homogeneous. In this dissertation, we use mean field techniques to analyze large complex systems composed of heterogeneous entities. First, we consider a class of large multi-server systems, that arise in the context of web-server farms and cloud data centers. In such systems, servers with heterogeneous capacities work in parallel to process incoming jobs or requests. We study schemes to assign the incoming jobs to the servers with the goal of achieving optimal performance in terms of certain metrics of interest while requiring the state information of only a small number of servers in the system. To this end, we consider randomized dynamic job assignment schemes which sample a small random subset of servers at every job arrival instant and assign the incoming job to one of the sampled servers based on their instantaneous states. We show that for heterogeneous systems, naive sampling of the servers may result in an `unstable' system. We propose schemes which maintain stability by suitably sampling the servers. The performances of these schemes are studied via the corresponding mean field limits, that are shown to exist. The existence and uniqueness of an asymptotically stable equilibrium point of the mean field is established in every case. Furthermore, it is shown that, in the large system limit, the servers become independent of each other and the stationary distribution of occupancy of each server can be obtained from the unique equilibrium point of the mean field. The stationary tail distribution of server occupancies is shown to have a fast decay rate which suggests significantly improved performance for the appropriate metrics relevant to the application. Numerical studies are presented which show that the proposed randomized dynamic schemes significantly outperform randomized static schemes where job assignments are made independently of the server states. In certain scenarios, the randomized dynamic schemes are observed to be nearly optimal in terms of their performances. Next, using mean field techniques, we study a different class of models that arise in the context of social networks. More specifically, we study the impact of social interactions on the dynamics of opinion formation in a social network consisting of a large number of interacting social agents. The agents are assumed to be mobile and hence do not have any fixed set of neighbors. Opinion of each agent is treated as a binary random variable, taking values in the set {0,1}. This represents scenarios, where the agents have to choose from two available options. The interactions between the agents are modeled using 1) the `voter' rule and 2) the `majority' based rule. Under each rule, we consider two scenarios, (1) where the agents are biased towards a specific opinion and (2) where the agents have different propensities to change their past opinions. For each of these scenarios, we characterize the equilibrium distribution of opinions in the network and the convergence rate to the equilibrium by analyzing the corresponding mean field limit. Our results show that the presence of biased agents can significantly reduce the rate of convergence to the equilibrium. It is also observed that, under the dynamics of the majority rule, the presence of `stubborn' agents (those who do not update their opinions) may result in a metastable network, where the opinion distribution of the non-stubborn agents fluctuates among multiple stable configurations

    Voter and majority dynamics with biased and stubborn agents

    Get PDF
    We study binary opinion dynamics in a fully connected network of interacting agents. The agents are assumed to interact according to one of the following rules: (1) Voter rule: An updating agent simply copies the opinion of another randomly sampled agent; (2) Majority rule: An updating agent samples multiple agents and adopts the majority opinion in the selected group. We focus on the scenario where the agents are biased towards one of the opinions called the preferred opinion. Using suitably constructed branching processes, we show that under both rules the mean time to reach consensus is Θ(logN), where N is the number of agents in the network. Furthermore, under the majority rule model, we show that consensus can be achieved on the preferred opinion with high probability even if it is initially the opinion of the minority. We also study the majority rule model when stubborn agents with fixed opinions are present. We find that the stationary distribution of opinions in the network in the large system limit using mean field techniques
    • …
    corecore