8,072 research outputs found

    Maintaining network connectivity and performance in robot teams

    Get PDF
    In this paper, we present an experimental study of strategies for maintaining end-to-end communication links for tasks such as surveillance, reconnaissance, and target search and identification, where team connectivity is required for situational awareness. Our main contributions are three fold: (a) We present the construction of a radio signal strength map that can be used to plan multi-robot tasks and also serve as useful perceptual information. We show how a nominal model of an urban environment obtained by aerial surveillance is used to generate strategies for exploration. (b) We present reactive controllers for communication link maintenance; and (c) we consider the differences between monitoring signal strength versus data throughput. Experimental results, obtained using our multi-robot testbed in three representative urban environments, are presented with each of our main contributions

    Decentralized Connectivity-Preserving Deployment of Large-Scale Robot Swarms

    Full text link
    We present a decentralized and scalable approach for deployment of a robot swarm. Our approach tackles scenarios in which the swarm must reach multiple spatially distributed targets, and enforce the constraint that the robot network cannot be split. The basic idea behind our work is to construct a logical tree topology over the physical network formed by the robots. The logical tree acts as a backbone used by robots to enforce connectivity constraints. We study and compare two algorithms to form the logical tree: outwards and inwards. These algorithms differ in the order in which the robots join the tree: the outwards algorithm starts at the tree root and grows towards the targets, while the inwards algorithm proceeds in the opposite manner. Both algorithms perform periodic reconfiguration, to prevent suboptimal topologies from halting the growth of the tree. Our contributions are (i) The formulation of the two algorithms; (ii) A comparison of the algorithms in extensive physics-based simulations; (iii) A validation of our findings through real-robot experiments.Comment: 8 pages, 8 figures, submitted to IROS 201

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    Resilient and Decentralized Control of Multi-level Cooperative Mobile Networks to Maintain Connectivity under Adversarial Environment

    Full text link
    Network connectivity plays an important role in the information exchange between different agents in the multi-level networks. In this paper, we establish a game-theoretic framework to capture the uncoordinated nature of the decision-making at different layers of the multi-level networks. Specifically, we design a decentralized algorithm that aims to maximize the algebraic connectivity of the global network iteratively. In addition, we show that the designed algorithm converges to a Nash equilibrium asymptotically and yields an equilibrium network. To study the network resiliency, we introduce three adversarial attack models and characterize their worst-case impacts on the network performance. Case studies based on a two-layer mobile robotic network are used to corroborate the effectiveness and resiliency of the proposed algorithm and show the interdependency between different layers of the network during the recovery processes.Comment: 9 pages, 6 figure

    Connectivity Differences between Human Operators of Swarms and Bandwidth Limitations

    Get PDF
    Human interaction with robot swarms (HSI) is a young field with very few user studies that explore operator behavior. All these studies assume perfect communication between the operator and the swarm. A key challenge in the use of swarm robotic systems in human supervised tasks is to understand human swarm interaction in the presence of limited communication bandwidth, which is a constraint arising in many practical scenarios. In this paper, we present results of human-subject experiments designed to study the effect of bandwidth limitations in human swarm interaction. We consider three levels of bandwidth availability in a swarm foraging task. The lowest bandwidth condition performs poorly, but the medium and high bandwidth condition both perform well. In the medium bandwidth condition, we display useful aggregated swarm information (like swarm centroid and spread) to compress the swarm state information. We also observe interesting operator behavior and adaptation of operators' swarm reaction
    • …
    corecore