253 research outputs found

    Magnetic localization and control of helical robots for clearing superficial blood clots

    Get PDF
    This work presents an approach for the localization and control of helical robots during removal of superficial blood clots inside in vitro and ex vivo models. The position of the helical robot is estimated using an array of Hall-effect sensors and precalculated magnetic field map of two synchronized rotating dipole fields. The estimated position is used to implement closed-loop motion control of the helical robot using the rotating dipole fields. We validate the localization accuracy by visual feedback and feature tracking inside the in vitro model. The experimental results show that the magnetic localization of a helical robot with diameter of 1 mm can achieve a mean absolute position error of 2.35 ± 0.4 mm (n = 20). The simultaneous localization and motion control of the helical robot enables propulsion toward a blood clot and clearing at an average removal rate of 0.67 ± 0.47 mm3/min. This method is used to localize the helical robot inside a rabbit aorta (ex vivo model), and the localization accuracy is validated using ultrasound feedback with a mean absolute position error of 2.6 mm

    Helical Propulsion in a Viscous Heterogeneous Medium

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation presents results documenting advancements on the control of untethered magnetic devices, such as magnetic \microrobots" and magnetically actuated capsuleendoscopes, motivated by problems in minimally invasive medicine. This dissertationfocuses on applying rotating magnetic elds for magnetic manipulation. The contributions include advancements in the way that helical microswimmers (devices that mimicthe propulsion of bacterial agella) are controlled in the presence of gravitational forces, advancements in ways that groups of untethered magnetic devices can be dierentiated and semi-independently controlled, advancements in the way that untethered magnetic device can be controlled with a single rotating permanent magnet, and an improved understanding in the nature of the magnetic force applied to an untethered device by a rotating magnet

    Doctor of Philosophy

    Get PDF
    dissertationClosed-loop control of wireless capsule endoscopes is an active area of research because it would drastically improve screening of the gastrointestinal tract. Traditional endoscopic procedures are unable to view the entire gastrointestinal tract and current commercial wireless capsule endoscopes are limited in their effectiveness due to their passive nature. This dissertation advances the field of active capsule endoscopy by developing methods to localize the full six-degree-of-freedom (6-DOF) pose of a screw-type magnetic capsule while it is being propelled through a lumen (such as the small intestines) using an external rotating magnetic dipole. The same external magnetic dipole is utilized for both propulsion and localization. Hardware was designed and constructed to enable testing of the magnetic localization and propulsion methods, including a robotic end-effector used as the external actuator magnet, and a prototype capsule embedded with Hall-effect sensors. Due to the use of a rotating magnetic field for propulsion, at any given time, the capsule can be in one of three regimes: synchronously rotating with the applied field, in "step-out" where it is free to move but the external field is rotating too quickly for the capsule to remain synchronously rotating, or completely stationary. We show that it is only necessary to distinguish whether or not the capsule is synchronously rotating (i.e., a single localization method can be used for a capsule in either the step-out or stationary regimes). Two magnetic localization methods are developed. The first uses nonlinear least squares to estimate the capsule's pose when it has no (or approximately no) net motion (e.g., to find the initial capsule pose or when it is stuck in an intestinal fold). The second method estimates the 6-DOF capsule pose as it synchronously rotates with the applied magnetic field using a square-root variant of the Unscented Kalman filter. A simple process model is adopted that restricts the capsule's movement to translation along and rotation about its principle axis. The capsule is actively propelled forward or backward, but it is not actively steered, rather, steering is provided by the lumen. The propulsion parameters that transform magnetic force and torque to the capsule's spatial velocity and angular velocity are estimated with an additional square-root Unscented Kalman filter to enable the capsule to navigate heterogeneous environments such as the small intestines. An optimized localization-propulsion system is described using the two localization algorithms and prior work in screw-type magnetic capsule propulsion with a single rotating dipole field. The capsule's regime is determined and the corresponding localization method is employed. Based on the capsule's estimated pose and the current estimates of its propulsion parameters, the actuator magnet's pose relative to the capsule is optimized to maximize the capsule's forward propulsion. Using this system, our prototype magnetic capsule successfully completed U-shaped and S-shaped trajectories in fresh bovine intestines with an average forward velocity of 5.5mm/s and 3.5 mm/s, respectively. At this rate it would take approximately 18-30 minutes to traverse the 6 meters of a typical human small intestine

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    Nature-inspired soft robotics: On articial cilia and magnetic locomotion

    Get PDF
    Inspired by micro-organisms in nature, people imagined using micro-scale soft robots to work inside the human body for therapeutic drug delivery, minimally invasive surgery, or diagnostic biochemical sensing. To create these robots is challenging due to their small size, viscosity environment, and soft constituting materials. In addition, the mechanisms of operation are quite different from the conventional rigid macro-scale robots that we are familiar with. In this PhD project, we focused on the computational analysis and design of micro-scale soft robots. Working closely with experimental groups, we studied artificial cilia and micro-swimmers that can realize particle manipulation, fluid transport, fluid mixing, or magnetic locomotion. Various cilia systems are considered, including soft inflatable cilia which could be controlled individually and programmable magnetic cilia featuring phase shifts and collective metachronal patterns. We also analyze micro-swimmers that are soft and adaptive in confined spaces. Driven by different external magnetic fields, the swimmer's motion can be changed between undulation crawling, undulation swimming, and helical crawling. By using computational modeling, we analyze the transport mechanisms of the soft robots and study the effect of different parameters to provide guidelines for the design of the robots in specific applications. By studying the physical mechanisms of micro-organisms in nature, we are not only able to understand more clearly their functional behaviour, it also opens the possibility of biomimetic design of soft robotic cilia and micro-swimmers

    A review of modeling and control of remote-controlled capsule endoscopes.

    Get PDF
    INTRODUCTION: The significance of this review lies in addressing the limitations of passive locomotion in capsule endoscopes, hindering their widespread use in medical applications. The research focuses on evaluating existing miniature in vivo remote-controlled capsule endoscopes, examining their locomotion designs, and working theories to pave the way for overcoming challenges and enhancing their applicability in diagnostic and treatment settings. AREAS COVERED: This paper explores control methods and dynamic system modeling in the context of self-propelled remote-controlled capsule endoscopes with a two-mass arrangement. The literature search, conducted at Queen Mary University of London Library from 2000 to 2022, utilized a systematic approach starting with the broad keyword 'Capsule Endoscope' and progressively narrowing down to specific aspects such as 'Capsule Endoscope Control' and 'Self-propelled Capsule Endoscope' using various criteria. EXPERT OPINION: Efficiently driving and controlling remote-controlled capsule endoscopes have the potential to overcome the current limitations in medical technology, offering a viable solution for diagnosing and treating gastrointestinal diseases. Successful control of the remote-controlled capsule endoscope, as demonstrated in this review paper, will lead to a step change in medical engineering, establishing the remote-controlled capsule endoscope as a swift standard in the field
    • …
    corecore