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ABSTRACT

Closed-loop control of wireless capsule endoscopes is an active area of research because

it would drastically improve screening of the gastrointestinal tract. Traditional endoscopic

procedures are unable to view the entire gastrointestinal tract and current commercial

wireless capsule endoscopes are limited in their effectiveness due to their passive nature.

This dissertation advances the field of active capsule endoscopy by developing methods

to localize the full six-degree-of-freedom (6-DOF) pose of a screw-type magnetic capsule

while it is being propelled through a lumen (such as the small intestines) using an external

rotating magnetic dipole. The same external magnetic dipole is utilized for both propul-

sion and localization.

Hardware was designed and constructed to enable testing of the magnetic localization

and propulsion methods, including a robotic end-effector used as the external actuator

magnet, and a prototype capsule embedded with Hall-effect sensors. Due to the use of

a rotating magnetic field for propulsion, at any given time, the capsule can be in one

of three regimes: synchronously rotating with the applied field, in “step-out” where it

is free to move but the external field is rotating too quickly for the capsule to remain

synchronously rotating, or completely stationary. We show that it is only necessary to

distinguish whether or not the capsule is synchronously rotating (i.e., a single localization

method can be used for a capsule in either the step-out or stationary regimes). Two

magnetic localization methods are developed. The first uses nonlinear least squares to

estimate the capsule’s pose when it has no (or approximately no) net motion (e.g., to

find the initial capsule pose or when it is stuck in an intestinal fold). The second method

estimates the 6-DOF capsule pose as it synchronously rotates with the applied magnetic

field using a square-root variant of the Unscented Kalman filter. A simple process model

is adopted that restricts the capsule’s movement to translation along and rotation about

its principle axis. The capsule is actively propelled forward or backward, but it is not

actively steered, rather, steering is provided by the lumen. The propulsion parameters that



transform magnetic force and torque to the capsule’s spatial velocity and angular velocity

are estimated with an additional square-root Unscented Kalman filter to enable the capsule

to navigate heterogeneous environments such as the small intestines.

An optimized localization-propulsion system is described using the two localization

algorithms and prior work in screw-type magnetic capsule propulsion with a single rotat-

ing dipole field. The capsule’s regime is determined and the corresponding localization

method is employed. Based on the capsule’s estimated pose and the current estimates of

its propulsion parameters, the actuator magnet’s pose relative to the capsule is optimized

to maximize the capsule’s forward propulsion. Using this system, our prototype mag-

netic capsule successfully completed U-shaped and S-shaped trajectories in fresh bovine

intestines with an average forward velocity of 5.5 mm/s and 3.5 mm/s, respectively. At

this rate it would take approximately 18-30 minutes to traverse the 6 meters of a typical

human small intestine.
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CHAPTER 1

INTRODUCTION

Diseases in the gastrointestinal tract are a major health concern (e.g., colorectal cancer

is the third most common type of cancer in the United States [1]). Wireless capsule endo-

scopes are a promising diagnostic tool because they provide the ability to view the entire

gastrointestinal tract painlessly and without anesthesia, but in their current passive form,

their effectiveness is limited. Researchers have been investigating alternative methods to

actively propel and localize these devices because it would transform cancer screening

[2, 3]. One promising method is using magnetic fields, which has the benefit of being

able to actuate [4, 5, 6, 7, 8, 9] and localize [10, 11, 12, 13, 14] the capsule using the same

technology. A small permanent magnet is embedded inside the capsule, and an externally

placed magnetic source is used to manipulate the device, with no additional power source

needed for the capsule’s propulsion.

Prior work in closed-loop control of magnetic capsules has focused on utilizing mag-

netic gradients for dragging or pulling [6, 15, 16], but magnetic force decreases with dis-

tance as ‖pc‖−4 whereas magnetic torque decreases as ‖pc‖−3 where pc is the position

vector from the actuator magnet to the capsule. In clinical applications where the ability

to increase that distance would be advantageous, the use of magnetic torque is preferable.

A propulsion method for capsule endoscopes was previously developed that utilizes a

single rotating dipole to simultaneously employ magnetic force and torque [8]. Use of this

method relied on a six-degree-of-freedom (6-DOF) robotic arm to manipulate the actuator

magnet, but was subject to singularity and workspace issues. Chapter 2 describes the

spherical-actuator-magnet manipulator (SAMM), which will be used as the actuator mag-

net in all subsequent localization and propulsion work. This device is a robotic end-effector

that provides singularity-free rotation about any arbitrary axis and is almost perfectly

approximated by the point-dipole model.
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There are numerous ways to determine the position and orientation (collectively re-

ferred to as the pose) of wireless capsules endoscopes (see [17] for a full review), but the use

of magnetic fields is preferable if used in conjunction with magnetic propulsion because

little or no additional hardware is required.

There are two general methods used in magnetic tracking for capsule endoscopy. The

first uses an array of externally placed sensors to localize a small permanent magnet placed

inside the capsule [10, 11, 18, 19]. This option often is not compatible with magnetic

actuation because the sensors are corrupted by the larger external magnet. While it is

possible to subtract off the known applied field and estimate the 5-DOF pose of the capsule

[20], a complete 6-DOF pose is preferable to optimize the capsule’s control. Alternatively,

magnetic sensors can be embedded inside the capsule and its pose estimated relative to an

external magnetic source [12, 13, 21, 22]. This is the method we will employ. Prior work

required large-range magnetic sensors to prevent saturation from their close proximity to

the capsule’s internal magnet. In Chapter 3, we design a prototype capsule embedded

with Hall-effect sensors, which are strategically placed to measure the magnetic field at

the center of the capsule with negligible interference from the capsule’s magnet. Based on

these magnetic field measurements, we wanted to estimate the 6-DOF capsule pose. Non-

iterative localization algorithms using a rotating dipole field were investigated, but found

too noise-sensitive for real-time use [23, 24]. Chapter 3 develops an iterative magnetic

localization method to estimate the full 6-DOF pose of the capsule while it is stationary or

in the step-out regime in which the magnetic field is rotated too quickly for the capsule

to remain in synchronous rotation. While similar methods previously existed, [21, 24],

the method we develop is more robust to sensor noise because it uses all sensor data

independently and solves for the complete 6-DOF pose simultaneously. Furthermore, it

explores the use of additional rotation axes to improve localization accuracy.

The method described in Chapter 3 assumes the capsule has no net motion, and as

a result the capsule’s propulsion and localization must be decoupled. This requirement

limits the effectiveness of the previous localization algorithm because the capsule’s ac-

tuation must be periodically paused to update the capsule’s pose estimate. To provide

continuous control, the full 6-DOF capsule pose must be estimated while it is actively

propelled. In Chapter 4, we develop a localization method to estimate the capsule’s pose
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while it is synchronously rotating with the applied field. The combination of the two

localization algorithms with previously published actuation methods [8] is then used to

provide closed-loop propulsion of a magnetic capsule throughout an entire trajectory.

A complete localization-propulsion system is described in Chapter 4 which first esti-

mates the capsule’s current regime in the field (i.e., Is the capsule synchronously rotating

with the field?) and then utilizes the corresponding localization method for pose feedback

to the propulsion method. The optimal position and rotation speed of the external source

is chosen, subject to constraints (e.g., to prevent collisions with the patient), to maximize

the capsule’s forward velocity. Experiments successfully completed in bovine intestines

demonstrate the clinical feasibility of this localization-propulsion method.

Previously, a rotating magnetic field could only be used to localize stationary capsules,

which restricted the usefulness of prior magnetic-actuation methods. This work demon-

strates that magnetic fields are capable of providing closed-loop propulsion of magnetic

capsule endoscopes using a single rotating magnetic dipole field. The ability to actuate

and localize capsule endoscopes using a single external permanent magnet will provide a

low-cost option for imaging the entire gastrointestinal tract and has the potential to radi-

cally alter screening for diseases. Although this project will exclusively use a permanent

magnet for the actuator magnet, the methods are not restricted to this hardware, and can

be used with any rotating dipole field including electromagnetic systems [25]. Chapter 5

discusses recommendations for future work.
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CHAPTER 2

THE SPHERICAL-ACTUATOR-MAGNET

MANIPULATOR: A PERMANENT-

MAGNET ROBOTIC

END-EFFECTOR

The work included in this chapter was published in IEEE Transactions on Robotics, and

is included without modification. It details the development of the spherical-actuator-

magnet manipulator (SAMM) that is accurately modeled by the point-dipole equation and

can be rotated about any arbitrary axis instantaneously, eliminating singularity issues. This

device is used as the external magnetic source in all subsequent work in this dissertation.

This was a collaborative work with Samuel Wright and Arthur Mahoney, under the

guidance of Dr. Jake Abbott. My contributions to this work included: (1) I debugged the

SAMM device to determine why the control system was not effective at speeds above

1 Hz; (2) I retrofitted the device with nonmetallic materials to reduce eddy currents; (3)

I implemented a new control system, provided in Section IV, which improved position

tracking and tripled the maximum rotation speed of the SAMM (the velocity is now limited

by the chosen hardware); (4) I calibrated the Hall-effect sensor array used for feedback

control of the dipole moment; (5) I wrote the software for experimental validation; and (6)

I conducted and described the experiments in Section VIII.

c©2017 IEEE. Reprinted, with permission, from S. E. Wright, A. W. Mahoney, K. M. Popek,

and J. J. Abbott, “The Spherical-Actuator-Magnet Manipulator: A Permanent Magnet Robotic

End-Effector,” IEEE Transactions on Robotics, May 2017, DOI: 10.1109/TRO.2017.2694841.
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Abstract—A variety of magnetic devices can be manipulated re-
motely using a single permanent “actuator” magnet positioned in
space by a robotic manipulator. This paper describes the spherical-
actuator-magnet manipulator (SAMM), which is designed to re-
place or augment the singularity-prone spherical wrist used by
prior permanent-magnet manipulation systems. The SAMM uses
three omniwheels to enable holonomic control of the heading of its
magnet’s dipole and to enable its magnet to be rotated continuously
about any axis of rotation. The SAMM performs closed-loop con-
trol of its dipole’s heading using field measurements obtained from
Hall-effect sensors as feedback, combined with modeled dynamics,
using an extended Kalman filter. We describe the operation and
construction of the SAMM, develop and characterize controllers
for the SAMM’s spherical magnet, and demonstrate remote actua-
tion of an untethered magnetic device in a lumen using the SAMM.

Index Terms—Magnetic dipole, magnetic manipulation, medical
robotics, microrobotics, spherical mechanism.

I. INTRODUCTION

THIS paper describes the spherical-actuator-magnet manip-
ulator (SAMM), which is a mechatronic device housing

a solid uniformly magnetized spherical permanent magnet that
is intended to be used as the “actuator magnet” in a magnetic-
manipulation system. The SAMM is designed to be used as an
end-effector mounted to the tool frame of a robotic manipula-
tor that is used to position the spherical magnetic in space (see
Fig. 1). The SAMM enables holonomic singularity-free control
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Fig. 1. (a) SAMM prototype as the end-effector of a robotic manipulator.
(b) Concept diagram illustrating the spherical magnet (1), which is prevented
from translating by four constraints (2) that create a rolling form-closure. Three
omniwheels (3) whose axes of rotation span R3 contact the magnet and cause
it to rotate as desired. Magnetic-field sensors (4) measure the magnet’s dipole
moment to be used for closed-loop control of the dipole’s heading (i.e., 2-DOF
orientation).

of the orientation of its spherical magnet, as well as continu-
ous rotation of its magnet about arbitrary axes of rotation. The
SAMM was designed so as to remove kinematic limitations
encountered in prior permanent-magnet manipulation systems.
This distal surface of the SAMM is designed to be smooth and
free of moving parts, so that the spherical magnet can be placed
very close to the magnetic device that it is trying to actuate or
manipulate.

Two prior works in our lab motivated the development of the
SAMM. The ability to control a screw-like untethered magnetic
device (UMD) in a lumen using a single rotating permanent
magnet as the actuation source, in a task reminiscent of ac-
tive capsule endoscopy in the intestines, was described in [1].
The results of [1] enable the actuator magnet to be placed in
any position relative to the UMD, provided a specific position-
dependent actuator-magnet rotation axis is established. In the
experimental results of [1], the actuator magnet was rotated by
a single DC motor that was rigidly mounted to the tool frame of
an industrial six-degree-of-freedom (6-DOF) robotic manipula-
tor. In that setup, the rotation axis of the actuator magnet was
fixed with respect to the tool frame of the robotic manipulator.
Such a setup is capable of placing the actuator magnet with the

1552-3098 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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correct rotation axis to guide a UMD through relatively sim-
ple trajectories. However, when tasked with navigating a UMD
through tortuous paths (e.g., the small intestines), the physical
constraints of the robotic manipulator (i.e., joint limits and sin-
gularities) limit how the UMD can be actuated, and limit the
workspace.

The effects of manipulator limitations on UMD actuation
were also observed and were characterized in [2], where a single,
nonrotating permanent magnet was used to levitate a semibuoy-
ant magnetic capsule with 5-DOF (3-DOF position and 2-DOF
heading) control in a task reminiscent of capsule endoscopy in
the stomach. Kinematic singularities and workspace limitations
were identified as the primary limiting factors to dexterous ma-
nipulation. To mitigate the effect of singularities, the authors
introduced a control method that sacrificed control authority
over the capsule’s heading in order to maintain 3-DOF con-
trol over the capsule’s position when the manipulator nears a
kinematic singularity.

The SAMM has no joint limits or kinematic singularities
by design. This is made possible by using three omniwheels
to drive the SAMM’s spherical magnet. An omniwheel is a
common mechanism that incorporates small rollers that permit
controlled rotation about the omniwheel’s rotation axis and free
rotation about the two orthogonal axes. Designing the three om-
niwheel rotation axes to be linearly independent enables any
instantaneous magnet rotation axis to be achieved. By making
the magnet’s axis of rotation continuously variable, irrespec-
tive of the robotic manipulator used to position the SAMM,
the kinematic singularities of the robotic manipulator can be
avoided, and the robotic manipulator is free to position the actu-
ator magnet optimally for manipulation. The SAMM will also
enable robotic manipulators with less than 6-DOF to be con-
sidered for use in magnetic manipulation (e.g., a simple 3-DOF
gantry system or SCARA robot). With singularity-free orien-
tation control of its spherical magnet, the SAMM can be used
to solve the problems found in both of the projects described
above, and has the potential to be used for the remote actuation
of a variety of magnetic devices that have been previously de-
veloped for minimally invasive medicine, including both UMDs
[1], [3]–[11], and tethered magnetic devices such as catheters
and cochlear-implant electrode arrays [12], [13].

There are several reasons for choosing a magnet of spherical
geometry. First, being of constant radius, it is simple to maintain
form-closure regardless of the magnet’s orientation, enabling it
to be easily incorporated into a physical device. Second, a spher-
ical magnet makes the best use of available space in the sense
that it fully fills the volume of its bounding sphere with mag-
netic material to maximize the strength of the magnetic dipole.
Third, the field of a spherical permanent magnet is theoreti-
cally perfectly fit by the simple point-dipole model [14], [15],
which enables analytic tools to be accurately applied. Finally,
a spherical body has no principal directions of inertia, giving
it isotropic dynamic properties, which is particularly valuable
during continuous rotation.

Our SAMM design was inspired by prior “ballbot” systems,
in which a robot balances itself atop a sphere (e.g., a bowling
ball) [16], [17]. With ballbots, only the instantaneous angular

velocity of the ball is important for control, and the ball’s ori-
entation is not measured [18] (i.e., there is no preferred “north
pole” of a bowling ball). However, for remote magnetic ma-
nipulation, knowledge of the magnet’s dipole heading is crit-
ical since it determines the field applied to the actuated mag-
netic device and how the device is controlled. Therefore, the
SAMM includes a magnetic-field sensor system to estimate the
spherical-magnet’s dipole heading. The SAMM is fundamen-
tally different—in terms of design, control, and end use—from
spherical motors, which use electromagnetic stator coils to ori-
ent a permanent-magnet spherical rotor (see [19]).

We use the term “heading” since the dipole’s magnitude is
constant and known, and we are only interested in the 2-DOF
pointing orientation of the dipole rather than the full 3-DOF
orientation of the sphere. This is because the field generated by
a spherical permanent magnet is radially symmetric about its
dipole axis, so rotations about the dipole axis neither result in a
change in the magnetic field to the remote device being actuated
nor to the sensors measuring the field.

In this paper, we expand the results of [20] in the following
ways.

1) A Kalman filter is presented that estimates the spherical
magnet’s dipole heading and angular velocity by synthe-
sizing sensor feedback and modeled dynamics.

2) We describe our mechanical approach to keep the omni-
wheels in contact with the spherical magnet despite non-
idealities.

3) We present a new “pointing mode” controller that solely
controls the spherical magnet’s dipole heading.

4) We present an improved version of the “rotating mode”
controller.

5) We describe how to calibrate the magnetic-field sensors
used to measure the spherical magnet’s heading, which
substantially improves the accuracy of the estimation of
the spherical magnet’s dipole heading.

6) We present two additional experiments that assess the
performance of the controllers we present herein.

II. VELOCITY KINEMATICS AND INVERSE KINEMATICS

We follow a convention where scalars are denoted by lower
case standard font (e.g., c), vectors by lower case bold font
(e.g., x), and matrices by capital bold font (e.g., M). The “hat”
symbol denotes a unit-length vector (e.g., x̂).

For some desired angular velocity ωm ∈ R3 of the spheri-
cal magnet, the necessary omniwheel rotation speeds must be
determined. Let the unit-length vectors d̂1 , d̂2 , and d̂3 point
from the magnet’s center to the contact points where the three
omniwheels touch the magnet (see Fig. 2). We assume that the
omniwheel axes â1 , â2 , and â3 are perpendicular to d̂1 , d̂2 , and
d̂3 , respectively, and assume that there is no slip between the
omniwheels and the magnet. Given a magnet angular velocity
ωm , the surface velocity of the magnet at the ith omniwheel–
magnet contact point is given as

ui = rm ωm × d̂i (1)

where rm is the radius of the magnet.

8



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WRIGHT et al.: THE SPHERICAL-ACTUATOR-MAGNET MANIPULATOR: A PERMANENT-MAGNET ROBOTIC END-EFFECTOR 3

Fig. 2. Two orthogonal views of the SAMM’s omniwheel configuration are
shown. The vectors â1 , â2 , and â3 are the omniwheel rotation axes, and d̂1 , d̂2 ,
and d̂3 point from the magnet center to the corresponding omniwheel contact
point. The depicted coordinate system is used throughout this paper.

The components of u1 , u2 , and u3 parallel to the respec-
tive omniwheel axes are transferred directly into rotation of the
omniwheel rollers, and cause no rotation of the omniwheels
themselves. All other components of u1 , u2 , and u3 cause each
omniwheel to rotate with scalar rotation speeds ωa1 , ωa2 , and
ωa3 , respectively. The component direction of ui that causes the
ith omniwheel to rotate about its axis is given as

q̂i = d̂i × âi . (2)

Under the assumption of no-slip, the projection of u1 , u2 ,
and u3 onto the directions q̂1 , q̂2 , and q̂3 , respectively, must
be mapped to the scalar rotation speeds of each omniwheel by
the reciprocal of the omniwheels’ radii (denoted by rw , as we
assume identical omniwheels) as

ωai =
1

rw
q̂T

i ui =
rm

rw
âT

i {d̂i}
2
ωm (3)

where {d̂i} ∈ so(3) is the skew-symmetric matrix form of the
cross-product operation.

All three omniwheel rotation speeds can be packed into the
vector ωa and related to the spherical magnet angular velocity
ωm , in matrix form, as

ωa =

⎡
⎣

ωa1

ωa2

ωa3

⎤
⎦ =

rm

rw

⎡
⎢⎣

âT
1{d̂1}

2

âT
2{d̂2}

2

âT
3{d̂3}

2

⎤
⎥⎦ωm . (4)

Due to the assumption that âi is perpendicular to d̂i , (4) can be
simplified to

ωa = −rm

rw

⎡
⎢⎣

âT
1

âT
2

âT
3

⎤
⎥⎦ωm = ηATωm (5)

where η = −rm /rw is the gear ratio from the omniwheels to
the sphere (with the negative sign indicating the change in
rotation direction from the omniwheels to the magnet), and
A =

[
â1 â2 â3

]
.

The omniwheel axes and positioning must be designed such
that matrix A has full rank, otherwise there will exist a di-

rection of ωm that cannot be achieved with any selection of
omniwheel rotation speeds. Although linear independence of
the columns of A is a sufficient condition mathematically, in
practice the columns should be designed to be as close to mu-
tually orthogonal as possible. Otherwise, some desired ωm will
require an unnecessarily, and possibly unachievably, fast om-
niwheel rotation speed. We designed our system so that â1 ,
â2 , and â3 are mutually orthogonal and arranged as shown
in Fig. 2. This counter-opposed configuration results in the
omniwheel axes: â1 = [

√
2/2

√
2/2 0]T, â2 = [0 0 (−1)]T, and

â3 = [
√

2/2 (−
√

2/2) 0]T. Other feasible omniwheel arrange-
ments are possible [21].

III. SYSTEM DYNAMICS

The net applied torque τm on the actuator magnet is related
to the magnet’s instantaneous angular velocity ωm and angular
acceleration ω̇m by

τm = Jω̇m + B(ωm )ωm + c(ωm , τm ) (6)

where the manipulator’s rotational inertia matrix is denoted by
J ∈ R3×3 , the viscous friction matrix is denoted by B(ωm ) ∈
R3×3 , and the Coulomb friction is denoted byc(ωm , τm ) ∈ R3 .

The rotational inertia matrixJ is the combination of the inertia
due to the spherical magnet Jm and the inertia due to the motors
and omniwheels Jw :

J = Jm + η2Jw =
2

5
mm r2

m I3 + η2

(
1

2
mw r2

w + jmot

)
I3

(7)
where the gear ratio η is defined in Section II, mm is the mass of
the spherical magnet, and rm is its radius. The rotational inertia
of each omniwheel includes the omniwheel’s inertia (approxi-
mated as a rotating disk with radius rw and mass mw ) and the
corresponding driving motor’s inertia jmot (this term includes
the motor’s rotor inertia reflected through any gearing in the mo-
tor, as seen at the output shaft). Matrix I3 ∈ R3×3 is the identity
matrix.

We have observed viscous and Coulomb friction effects [22]
that are asymmetric. The viscous friction matrix B(ωm ) is mod-
eled as B = diag(B1 , B2 , B3), where the coefficients Bi are
determined according to the sign of the corresponding terms of
ωm :

Bi =

{
B+

i : ωm,i > 0
B−

i : ωm,i < 0.
(8)

The Coulomb friction term c(ωm , τm ), which models static
friction, is defined as

ci =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τi : ωm,i = 0 and c−
i ≤ τm,i ≤ c+

i

c+
i : ωm,i = 0 and τm,i > c+

i

c−
i : ωm,i = 0 and τm,i < c−

i

c+
i : ωm,i > 0

c−
i : ωm,i < 0.

(9)

Note that similarly to how magnet angular velocity ωm is
mapped to motor angular velocity ωa via (5), the magnet torque
τm is mapped to motor torque τa through AT, but with the

9
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inverse of the gear ratio:

τa =
1

η
ATτm . (10)

IV. SENSING THE MAGNET’S DIPOLE MOMENT

The dipole moment of the magnetic body (denoted by the vec-
tor m) is the vector from the south to north poles of the magnet.
Methods of magnetic manipulation using a single permanent
magnet require the magnet’s dipole moment to be specifically
directed and thus known. The dipole moment m of the SAMM’s
magnet can be determined by measuring the magnetic field h
that it generates in space.

One approach to measuring the magnetic field uses Hall-
effect sensors, which measure the component of the field in
the direction normal to (i.e., passing through) the sensor’s face.
We assume the general case of n Hall-effect sensors. Let each
sensor be positioned in space such that the vectors p1 through
pn , in units of meters, measure each sensor’s position relative
to the spherical magnet’s center, and let v̂1 through v̂n be unit-
magnitude vectors that describe the directions that are sensed
by each sensor; all vectors are expressed in the same frame as
m. Let the magnetic field at each sensor position be denoted by
h1 through hn , in units A · m−1 . The measured component of
the field produced by the ith sensor is denoted with the scalar si

and is given by

si = v̂T
i hi . (11)

The magnetic field hi , at each sensor position pi , can be
predicted with the point-dipole model

hi =
1

4π ‖pi‖3

(
3p̂ip̂

T
i − I3

)
m = Him (12)

which exactly predicts the field produced by a spherical perma-
nent magnet [14], [15]. For all other geometries, it is an approx-
imation that becomes more accurate with increasing distance
[23].

Substituting (12) into (11) produces an expression relating
the magnet’s dipole moment m to each of the n sensor mea-
surements, which can be aggregated into the following matrix
equation:

s =

⎡
⎢⎣

s1

...
sn

⎤
⎥⎦ =

⎡
⎢⎣

v̂T
1H1

...
v̂T

nHn

⎤
⎥⎦m = Sm. (13)

The n × 3 constant matrix S encapsulates the complete geo-
metric description of the sensor arrangement, as it pertains to
estimating m. If the matrix S has full column rank, then a
solution for the dipole moment m can be found as

m = S†s (14)

where S† = VΣ†UT is the Moore–Penrose pseudoinverse of S,
using the singular-value decomposition S = UΣVT, where the
columns of U and V are the output and input singular vectors
of S, respectively, Σ contains the singular values of S on the
main diagonal and zeros elsewhere, and Σ† is the transpose of
Σ in which the nonzero singular values have been replaced by

Fig. 3. Sensor cluster comprising six Hall-effect sensors, mounted directly
above the housing, with coordinate system and numbering convention shown.

their reciprocals [24]. The matrix S should be made to have
full column rank by using at least three Hall-effect sensors and
appropriately selecting the positions (pi) and directions (v̂i) of
each sensor. When n > 3, (14) provides the best estimate ofm in
a least-squares sense. Along with making S full rank, the sensors
should also be ideally arranged to minimize the variance of the
measured dipole moment by decreasing the singular values of
S. Note that the constant matrix S† can be calculated offline.

For our system, we designed a sensor cluster comprising
six 1-DOF Allegro A1302 Hall-effect sensors that are arranged
on the surface of a cube and positioned in close proximity to
each other. The sensor cluster is mounted to the SAMM, as
shown in Fig. 3. In addition to being a space free from moving
parts, this location ensures that magnetic-field disturbances in
the workspace below the SAMM (e.g., from the magnet of a
device being manipulated by the SAMM) have a minimal impact
on the estimation of the SAMM magnet’s dipole heading. The
sensors, which have a sensitivity of 13 mV/mT, utilize their
full output-voltage range without saturation. We describe the
poses of the sensors quantitatively in Section VIII. Other sensor
arrangements are considered in [21].

V. STATE ESTIMATION

Although (14) provides an instantaneous measurement of the
magnet’s dipole, filtering incorporates knowledge of the ma-
nipulator’s dynamics to reduce the effects of sensor noise. We
have chosen to implement the hybrid extended Kalman filter
(EKF) [25], which linearizes the system’s nonlinear dynamic
and observation equations about the current predicted state be-
fore employing the Kalman filter algorithm, and which uses
continuous-time equations to model the system’s dynamics but
performs system observation in discrete time.

A. Review of the Hybrid EKF

We briefly review the hybrid EKF as described in [25] for
completeness. The hybrid implementation (otherwise known as
the discrete-time implementation) of the EKF allows for the state
x(t) and state estimate covariance to transition continuously
according to the models

ẋ(t) = f
(
x(t),u(t)

)
+ w(t) (15)

10
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Ṗ(t) = F(t)P(t) + P(t)F(t)T + Q (16)

respectively, where f
(
x(t),u(t)

)
models the system’s dynamics

given the input u(t) and process noise w(t) ∼ N (0,Q), and the
linearization matrix F(t) is given as

F(t) =
∂f

∂x

∣∣∣∣
x̄(t),u(t)

. (17)

Discrete measurements at the jth time step are modeled as

zj = g(xj ) + vj (18)

where xj = x(tj ) and vj ∼ N (0,R) is zero-mean measure-
ment noise that is uncorrelated in time.

1) Predict: An a priori state estimate xj |j−1 and covariance
pj |j−1 can be recursively predicted from the a posteriori esti-
mate at the previous time step tj−1 by integrating (15) and (16)
using a zero-order hold on the system inputs u(t):

xj |j−1 = xj−1|j−1 +

∫ tj

tj −1

f(x(t),u(tj−1))dt (19)

Pj |j−1 = Pj−1|j−1 +

∫ tj

tj −1

Ṗ(t)dt. (20)

2) Update: The a priori estimate is updated to become the a
posteriori estimate by performing a Kalman update with sensor
observations. The Kalman gain Kj is computed using the a
priori covariance, the linearization of the observation model g,
and the covariance of observation noise R as

Kj = Pj |j−1G
T
j (GjPj |j−1G

T
j + R)−1 (21)

where Gj is given as

Gj =
∂g

∂x

∣∣∣∣
x̄j |j −1

. (22)

The Kalman update is calculated by comparing the actual sensor
observation z with the predicted observation g(xj |j−1):

xj |j = xj |j−1 + Kj

(
zj − g(xj |j−1)

)
(23)

Pj |j =
(
I − KjGj

)
Pj |j−1 . (24)

B. Implementing the Hybrid EKF

The SAMM state is represented as the vector

x =

[
m̂
ωm

]
∈ S2 × R3 (25)

packed with the unit-length dipole moment heading m̂ ∈ S2

and the magnet’s angular velocity ωm ∈ R3 .
The continuous-time evolution of the SAMM state and co-

variances are given by (15) and (16), where f(x,u) is

f(x,u) =

[
ωm × m̂

J−1
(
τm − B(ωm )ωm − c (ωm , τm )

)
]

(26)

where u = τm is the system input, and F is calculated as

F =
∂f

∂x
=

[
{ωm} −{m̂}

0 −J−1B(ωm )

]
. (27)

Note that the Coulumb friction term c(ωm , τm ) does not vary
with m̂ or ωm when ωm �= 0, additionally both B(ωm ) and
c(ωm , τm ) are not differentiable when ωm = 0 but we neglect
this issue for simplicity since ωm is rarely 0.

Observations are performed in discrete-time using the Hall-
sensor system described in Section IV, which estimates the
dipole moment m, and using measurements of the magnet’s
angular velocity obtained by differentiating the motor encoder
position and using (5). The observation model is structured as

z = g(x) =

[
S ‖m‖ 0

0 I3

]
x (28)

where S is the Hall-sensor matrix defined in (13). The observa-
tion model g(x) is then linearized as

G =
∂g

∂x
=

[
S ‖m‖ 0

0 I3

]
. (29)

VI. CONTROL

The SAMM has two modes of operation: pointing and rotat-
ing. Examples of where the pointing mode would be useful in-
clude any tasks requiring quasistatic magnetic fields, such as the
actuation of an endoscopic capsule in the stomach [2], a magnet-
tipped catheter [12], or a magnet-tipped cochlear-implant elec-
trode array [13]. Examples of where the rotating mode would
be useful include any task where a rotating magnetic field is
fundamental to the actuation strategy, such as rolling UMDs
along a surface [6]–[8], swimming through a fluid or crawling
through a lumen via helical propulsion [9], [10], [26]–[28], or
screwing through soft tissue [11].

Subsequent to [20] and [21], additional testing revealed that
the original rotating-mode controller was not stable for all rota-
tion axes at speeds greater than 1 Hz. The improved controller
presented here provides stable rotation for all axes and speeds
tested (up to 3 Hz); this maximum is due to hardware limita-
tions. In this updated implementation, custom pointing-mode
and rotating-mode controllers output a necessary magnet an-
gular velocity σ, which is mapped to the motor-space by the
transmission matrix A. The desired motor velocity of each om-
niwheel is input to its corresponding Maxon motor controller
(ESCON 36/2), which provides onboard closed-loop velocity
control and is tuned specifically for its wheel. We found a sim-
ple proportional controller was sufficient for both our pointing-
and rotating-mode controllers because of the closed-loop veloc-
ity control.

A. Pointing-Mode Controller

The pointing-mode controller governs the heading of the
actuator-magnet dipole moment m̂ to align along a desired
heading m̂des ∈ S2 . A proportional heading-control scheme
is employed using the Kalman filter’s estimate of the dipole
moment ˆ̄m. In order to drive ˆ̄m toward m̂des , the heading’s
restoration error vector e is computed as

e = θn̂ (30)

where θ is the angle between ˆ̄m and m̂des , and the vector
n̂ lies in the direction of ˆ̄m × m̂des . The angular velocity σ

11
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commanded to the individual motors’ velocity controllers is
computed as

σ = kpe (31)

where kp is the proportional gain.

B. Rotating-Mode Controller

The purpose of the rotating-mode controller is to generate
continuous rotation of the actuator-magnet dipole with some
desired angular velocity ωm ,des , with the dipole orthogonal to
ωm ,des , without any concern for the phase of the dipole within
the cycle. Similar to the previous rotating-mode controller [20],
[21], the updated version simultaneously employs two control
laws: a feedforward angular-velocity subcontroller that rotates
ˆ̄m about a desired angular velocity vector ωm ,des , and a propor-
tional heading subcontroller to drive ˆ̄m to the plane orthogonal
to ωm ,des with control effort given by σ⊥. The two control laws
are combined to form the total output angular velocity

σ = ωm ,des + σ⊥ (32)

which is sent to the motors’ velocity controllers. Note that the
terms ωm ,des and σ⊥ are always orthogonal to each other and
hence they do not fight each other in the control effort.

Control effort in the direction orthogonal to ωm ,des is com-
puted as

σ⊥ = kp⊥e⊥. (33)

The rotation-plane restoration vector e⊥ used to drive ˆ̄m to the
desired rotation plane is found as

e⊥ = ˆ̄m × Π̂ ˆ̄m (34)

where

Π =
(
I3 − ω̂m ,desω̂m ,des

T)
(35)

Π is a projection operator onto the plane defined by the normal
vector ωm ,des , and the rightmost term in the cross product in
(34) represents the normalized projection of ˆ̄m onto the desired
plane. e⊥ was chosen to connote “error”; it does approximate the
true angular error at small angles, but will have a magnitude that
is smaller than the angular error (i.e., sinusoidal in angular error)
at larger values, preventing large misalignments from resulting
in abrupt accelerations and undesirable slipping between the
omniwheels and the spherical magnet. Unlike in the pointing
mode, the cross product can be used in place of error because the
deviation of ˆ̄m from the desired rotation plane is at most 90◦, so
the magnitude of e⊥ is guaranteed to be monotonic with angular
error. Equation (34) breaks down when ˆ̄m is parallel to ω̂m ,des .
In this case, the error between ˆ̄m and the desired rotation plane
is 90◦, and any direction of motion will decrease the error from
the plane equally well, so we calculate the restoration vector
as e⊥ = ˆ̄m × Π̂ξ, where ξ is an arbitrary vector not parallel
to ˆ̄m (in our implementation of the controller it is randomly
generated).

Fig. 4. Prototype SAMM shown mounted to the tool frame (a) of robotic
manipulator. Encoders (b) measure the gearmotors’ (c) position. The cluster
of Hall-effect sensors (d) measures the spherical magnet’s dipole. Power is
transmitted through aluminum helical shaft couplings (e) to omniwheel axles
or 90◦ gearboxes (g), which pivot for omniwheel compliance (f). Omniwheels
(h) are tensioned to the spherical magnet through adjustable spring-tensioned
pillow blocks (i), whose tension can be manually tuned through adjustment
screws (j). Adjustable ball-roller-tip set-screws (k) create rolling form-closure
for the spherical magnet.

VII. PROTOTYPE IMPLEMENTATION

Our prototype SAMM is shown in Fig. 4. The magnetic body
is a 50.8-mm-diameter, Grade-N42, spherical permanent mag-
net with a dipole strength of 66.0 A·m2 . The field produced
by the spherical magnet, which is accurately modeled by the
point-dipole model (12), is strong in close proximity. During
the design process, we eliminated soft-magnetic components
(e.g., steel, iron, etc.) from the SAMM where possible, since
soft-magnetic material near the magnet becomes magnetized
under applied fields and would then exert an undesirable mag-
netic torque and force on the spherical magnet. For example, we
chose to use plastic screws (instead of steel) to hold the SAMM
mechanism together. Where it was not possible to eliminate
soft-magnetic material (e.g., the gearmotors), we designed the
SAMM mechanism in a way that placed soft-magnetic material
as far from the spherical magnet as possible, where the fields
are weakest and the soft-magnetic material would be magnetized
the least.

Additionally, time-varying magnetic fields (caused by rotat-
ing the magnet) induce eddy currents in nearby electrically
conductive material; these circulating currents create their own
magnetic field, resulting in drag on the magnet. When possible,
we used nonconductive material for components that are close
to the spherical magnet (where the fields are largest and eddy
currents would be highest). For example, the magnet enclosure
is milled out of black Nylon and the ball-roller-tip set-screws
that touch the magnet are made out of polyacetal and ceramic.

The form-closure constraints [see Figs. 1(b) and 4(k)] that
allow only rotation of the spherical magnet are implemented
with a set of four ball-roller-tipped precision set-screws. The
smallest number of such constraints needed to guarantee form-
closure is four, with three constraints whose contact points on

12
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the magnet do not form a hemispherical great circle on the ac-
tuator magnet and a fourth constraint contacting normal to the
plane established by the first three. Housed inside the tip of the
set-screw is a freely rotating 5.56-mm ball that is supported by
1.50-mm subrollers. The set-screws are threaded into the hous-
ing of the mechanism so that they constrain the magnet in its
desired position with minimal perceptible play when installed
flush with reference bosses on the exterior of the housing. The
body of the set-screws are polyacetal Misumi set-screws (BCS-
BJJ) with the ball-tips and subrollers replaced with ceramic
parts, making each set-screw nonmagnetic and nonconductive.

The housing of the device resembles a cylindrical structure
with a hemisphere at one end where three of the four form-
closure constraints are mounted. The housing is constructed out
of nonconductive ABS plastic to mitigate eddy currents. The
omniwheels contact the magnet through windows in the cylin-
drical body. The omniwheels are arranged in a counter-opposed
configuration, which results in the normal forces from each om-
niwheel being supported by the other omniwheels, which mu-
tually increases their traction, unlike other potential configura-
tions where the normal forces are supported by the form-closure
constraints resulting in higher rotating friction.

The custom omniwheels [see Fig. 4(h)] are based on de-
signs described in [29] and [16], and provide nearly continu-
ous contact with the magnet. Each omniwheel roller contains
dual ceramic ball bearings for minimal friction under load, as
well as a soft neoprene heat-shrink sleeve on the surface for
increased traction. It is important to maximize traction to max-
imize achievable acceleration and bandwidth. The omniwheels
are constructed with fully nonmagnetic components. Some com-
ponents are conductive, but their volume is small and effects
from eddy currents are not noticeable. When fully assembled,
the major diameter of each omniwheel is 58.2 mm.

The omniwheels are driven by three Maxon RE-max 29 gear-
motors [see Fig. 4(c)], which have a 24:1 gear ratio and 512
CPT encoders [see Fig. 4(b)], mounted with their shafts in par-
allel. The torques applied to omniwheel axes â1 and â3 are
redirected via 90◦ gearboxes [see Fig. 4(g)]; the torque ap-
plied to omniwheel axis â2 is transmitted without an additional
gearbox. The 90◦ gearboxes comprise nylon gears mounted to
aluminum shafts and are supported by dual acetal ball bearings
inside an aluminum case, making the 90◦ gearboxes entirely
nonmagnetic. The gearmotors are connected to the respective
drive shafts by aluminum helical couplings [see Fig. 4(e)].

Due to irregularities that exist in the omniwheels’ circularity
caused by gaps between omniwheel rollers and unintentional
eccentricity in the mechanical mounting, we found in our pro-
totype development that it was beneficial to include mechani-
cal compliance to maintain robust contact between the omni-
wheels and the magnet. The compliance should compensate for
irregularities without altering the torque transmission matrix A,
keeping âi constant and perpendicular to d̂i through its range of
travel. Our SAMM prototype employs two different approaches.
In the case of omniwheels 1 and 3 [see Fig. 2(f)], 1-DOF rotary
compliance is employed as illustrated in Fig. 5(a). The rotary
axes lie parallel to the respective omniwheel axes. The 90◦

gearboxes make the rotary axis perpendicular to the respective

Fig. 5. Compliance at the omniwheel–magnet interface axes âi . (a) Omni-
wheels 1 and 3 are depicted. The motor’s axis (I) is transmitted through the 90◦

gearbox to the omniwheel’s axis (II). Adjustable spring-tensioned pillow blocks
provide force (III) between the omniwheel and the magnet, creating compliance
(IV) locally parallel with d̂i . (b) Omniwheel 2 is depicted. The motor’s axis and
the omniwheel’s axis are coaxial, but the remainder of the design is similar.

motor axis, which decouples the direction of compliance from
the direction of motor torque transmission (avoiding potential
problems related to binding or traction loss). Tension is applied
to the omniwheel assemblies by adjustable spring-tensioned pil-
low blocks constructed of three-dimensional (3-D)-printed ABS
plastic with cutouts revealing serpentine-shaped springs, which
are reinforced with a silicone compression spring whose ten-
sion can be increased or decreased by tightening or loosening
an adjustment screw [see Fig. 4(j)]. For omniwheel 2, approx-
imate straight-line motion is formed utilizing two adjustable
spring-tensioned pillow blocks, similar to those used on axes 1
and 3, to tension the omniwheel directly onto the magnet in the
direction d̂2 , illustrated in Fig. 5(b). Although the motion is not
strictly constrained to d̂2 , we have found that the deviation is
insignificant.

The Hall-effect sensor cluster depicted in Fig. 3 is fabricated
by 3-D printing a housing from ABS plastic with slots in which
the Hall-effect sensors are inserted and affixed with adhesive.
The nominal positions and sensing directions of the sensors are
given in Table I. However, as we describe in Section VIII, the
values were updated using a calibration procedure.

Our SAMM prototype is intended to be mounted as the end-
effector of a robotic manipulator [see Fig. 1(a)]. In this config-
uration, the SAMM can be positioned so that its distal surface
[the hemispherical side where three of the four set-screws are
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TABLE I
HALL-EFFECT SENSOR PARAMETERS FOR SAMM PROTOTYPE

Nominal Nominal Calibrated Calibrated
Position Sensing Position Sensing
Vector Direction Vector Direction

Sensor pT
i (mm) vT

i pT
i (mm) vT

i

1
[

0 0 51.0
] [

0 0 1
] [

−0.611 0.112 50.8
] [

0.00520 −0.0604 0.998
]

2
[

0 0 58.5
] [

0 0 1
] [

−0.953 −0.101 59.0
] [

0.0126 0.0527 0.999
]

3
[

3.75 0 54.7
] [

1 0 0
] [

4.38 0.0474 55.3
] [

0.995 −0.0969 −0.0148
]

4
[

−3.75 0 54.7
] [

1 0 0
] [

−4.03 0.407 55.9
] [

0.987 −0.133 −0.0948
]

5
[

0 3.75 54.7
] [

0 1 0
] [

−0.0210 3.78 55.2
] [

0.0453 0.998 0.0359
]

6
[

0 −3.75 54.7
] [

0 1 0
] [

0.0768 −3.52 54.6
] [

0.0894 0.996 −0.0388
]

Note: See Section IV for parameter definitions.

located, as shown in Fig. 4(k)], which is streamlined and free of
moving parts, is presented to the manipulation workspace (e.g.,
a human body), reducing the risk of collisions or damage to
the moving SAMM components and enabling the actuator mag-
net to be positioned close to the remote magnetic device being
manipulated in order to maximize the strength of the applied
magnetic field. In our case, we use a 6-DOF manipulator, but
a 3-DOF Cartesian manipulator would be sufficient due to the
3-DOF of the SAMM.

VIII. EXPERIMENTATION

All experiments were performed with the SAMM mounted
to a 6-DOF Yaskawa Motoman robotic manipulator, which is
housed in an enclosure to mitigate environmental disturbances.
The SAMM was always oriented “vertically,” as depicted in
Fig. 1. The control system and data recording were implemented
in C++ and using a Sensoray 626 PCI DAQ card. The control
system is designed in a multithreaded structure with the control
loop, the Kalman-estimator loop, and the SAMM I/O loop all
operating at 200 Hz.

A. Parameter Estimation

1) Coulomb and Viscous Friction: Friction in the SAMM
was estimated using a directional Coulomb-plus-viscous friction
model described in Section III. The friction parameters were
experimentally obtained by driving the motors at open-loop
velocities ranging, in discrete increments, from 0 to 2π rad/s.
Each increment lasted for 30 s while the resulting motor torque
(τ a) and sensed motor angular velocity (ωa) were recorded at
a rate of 20 Hz. The motor torque is automatically computed by
the Maxon motor controllers that drive the three motors. Lines
were fit to the positive- and negative-velocity data [21], using
least squares, whose y-intercept and slope corresponding to the
Coulomb friction (c) and viscous friction (B), respectively, were
found to be

B+ = diag (0.0001, 0.0014, 0.0001) N · s/rad,

B− = diag (0.00001, 0.0014, 0.0005) N · s/rad,

c+ = [0.0632 0.0411 0.0436]TN,

c− = [−0.0455 − 0.0330 − 0.0723]TN.

2) Sensor Noise: Noise from each of the sensors is modeled
with the observation covariance matrix R described in Sec-
tion V. The submatrix of R that corresponds to the Hall-sensor
covariance is directly estimated by removing the spherical mag-
net from the SAMM and reading the idle sensor values to de-
termine their intrinsic noise. The submatrix corresponding to
the angular-velocity-measurement covariance is measured by
recording the covariance of the angular-velocity sensor values
with the motors driven open-loop with a constant input (which
we assume results in approximately constant motor angular ve-
locity). In both cases, sensor data are collected at a rate of 20 Hz
for a duration of 10 min. The covariances and means of the
first 50% of the data were compared to the final 50% to verify
that the estimation had converged and enough data were col-
lected. Each sensor was independently evaluated for a dc offset,
which is then removed in implementation to ensure that the
noise measured by each sensor is zero-mean. Note that we as-
sume the Hall-sensor measurements to be independent from the
angular-velocity measurements, which causes the off-diagonal
terms of R to be zero. The observation covariance measured
and implemented in our SAMM prototype is given as

R = diag(2.9, 2.9, 2.9, 2.8, 2.9, 2.8, 6.0, 6.0, 6.0) · 10−3

where the units of the top-left 6 × 6 submatrix of R is mT2 , and
the bottom-right 3 × 3 submatrix of R have units rad2 /s2 .

3) Process Noise: Process noise, represented by the covari-
ance matrix Q, is difficult to measure directly, so we experimen-
tally tuned the process-noise covariance to produce desirable
tracking performance:

Q = diag(0.002, 0.002, 0.002, 2.0, 2.0, 2.0) .

The top-left 3 × 3 submatrix, which corresponds to heading
uncertainty, was set to the value of δ (0.001 in the prototype
SAMM) multiplied by the value used in the bottom-right 3 × 3
submatrix, which in turn corresponds to the magnet’s angular-
velocities uncertainty represented by a constant multiplied by
an identity matrix; the rationale behind this choice is that dipole
heading is estimated by integrating angular velocity over one
time step, so angular-velocity error is mapped to heading error
in a predictable way. This constraint reduced the tuning search to
a 1-DOF search. Similar to the structure of R, the off-diagonal
terms of Q have been set to zero as we assume all of the states
to be independent. The units of Q correspond to the units of the
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state, where the upper left block matrix denotes the covariance
of the dipole heading (which is a unitless heading on the unit-
sphere), and the lower right block matrix is the covariance of
the dipole’s angular velocity measured in rad2 /s2 .

4) Hall-Effect Sensor Calibration: Discrepancies in the
Hall-effect sensors’ nominal design values (see Table I) will
lead to errors when estimating the magnet’s dipole heading. To
address this problem, the 5-DOF pose of each of the SAMM’s six
Hall-effect sensors was calibrated, utilizing an external three-
axis Metrolab THM1176-LF gaussmeter mounted below the
SAMM. To find the position directly below the magnet, a man-
ual gradient-ascent search was employed by moving the SAMM
in a horizontal plane to find the location that resulted in the max-
imum field component in the vertical direction, which is known
from (12) to occur directly below the magnet if the dipole is
oriented vertically. The search was accomplished by alternately
moving the SAMM in a 1 mm grid pattern and manually adjust-
ing the omniwheels to maximize the vertical field component
measured. Upon convergence, we knew the magnet was located
directly above the gaussmeter, and that it was oriented vertically.
The distance of the dipole above the sensor is then calculated
using (12) and knowledge of the dipole’s magnitude.

Next, with the SAMM’s position stationary, 26 random dipole
headings were generated by randomly moving the omniwheels
between each trial. For each dipole heading, the SAMM’s Hall-
effect sensor data and the gaussmeter data were collected. With
a known and constant position vector, we used the gauss-
meter readings to approximate the true heading m̂ of the
dipole for each of the 26 tests, using the Levenberg–Marquardt
least-squares algorithm in MATLAB to minimize ‖he − hm‖2 ,
where hm is the 3-D field measured by the gaussmeter, and he

is the field estimated by (12) using the current estimate of m̂.
Next, using our dataset with known dipole headings, a sim-

ilar method was utilized to estimate the 5-DOF pose of each
Hall-effect sensor independently, using the complete dataset.
The point-dipole equation is projected onto the measuring axis
of each sensor, v̂i , to estimate the scalar magnetic field at each
sensor position as in (11). Starting from the initial nominal es-
timates in Table I, the unit vector v̂i and the position vector pi

are approximated using a constrained nonlinear least-squares
algorithm to minimize ‖se − sm‖2 , where sm is an array of
scalar field measurements by an individual sensor at each of
the 26 dipole headings, and se contains the corresponding val-
ues estimated by (11) using the current estimates of v̂i and pi .
To average sensor noise, 100 measurements from each of the
26 dipole headings were recorded, for a total of 2600 measure-
ments per sensor.

Finally, this calibration process was tested by comparing an
additional ten random dipole headings measured by the gauss-
meter with those reported by the SAMM sensors. The error
across these ten tests was 1.5◦ ± 0.6◦ (mean ± standard devi-
ation). For comparison, using the nominal values from Table I
in (14) would have resulted in an error across these ten tests of
5.3◦ ± 2.6◦. Note that in our calibration procedure, we assumed
that the Hall-effect sensors’ sensitivities were accurately pro-
vided by the manufacturer. This assumption will lead to a small
error in the calibrated position pi in Table I (increased/decreased

sensitivity would translate the sensor’s position estimate radi-
ally inward/outward from the dipole), but the resulting estimated
dipole heading will be the same.

B. Controller Tuning

This section describes the gain tuning for both controllers
introduced in Section VI. In order to implement the pro-
portional pointing-mode and “orthogonal” rotating-mode con-
trollers, which are both effectively forms of heading regulation,
we must select the respective controller gains. The Ziegler–
Nichols tuning method is a heuristic-based approach to tuning
such controllers [30]. The method involves creating a propor-
tional controller and slowly increasing its gain until marginal
stability is observed (i.e., when the experimentally observed
oscillations are neither decreasing nor increasing over time).
This gain defines the “ultimate gain” ku , and the period of the
resulting oscillations defines the “ultimate period” tu . These
identified parameters, which are specific to the SAMM for a
given magnitude of step input (since the SAMM is not a linear
system), are used to determine all relevant gains. The tuning
parameters were experimentally found to be ku = 21.0 s−1 and
tu = 0.65 s, when tuning for a step-input magnitude of 5◦. The
Ziegler–Nichols formulation for a proportional controller, which
sets kp = 0.5 ku = 10.5 s−1 , was found to generate desirable
performance in both the pointing and rotating modes.

C. Performance Demonstrations

1) Pointing Mode: To test the pointing mode, we performed
a Monte Carlo experiment where the SAMM was initialized with
the dipole moment m̂ at a random heading and then commanded
to go to a new desired heading in a random direction with an
angular change of 5◦, 90◦, or 175◦. In total, 150 random trials
were performed, with 50 trials for each magnitude of angular
change. Each random heading was held constant for 10 s. The
root-mean-square (RMS) error was measured during the last
5 s of each trial. Across the 150 trials, the RMS error mean ±
standard deviation was 0.2◦ ± 0.1◦.

During the Monte Carlo experiment, we measured the time
required to converge to each random desired heading for each
magnitude of angular change. The convergence time tc was
defined as the time to reach and stay within 1.0◦ of the desired
heading. Fig. 6(a) shows the mean and standard deviation of
tc as a function of the step input θ’s magnitude. There is no
appreciable difference in tc at 5◦ and 90◦; the increase in tc at
175◦ is likely due to saturation from hardware limitations, which
occurs for steps larger than approximately 103◦ in our system.
The best and worst case time responses for each magnitude are
depicted in Fig. 6(b). It is worth noting that we did occasionally
observe slip between the omniwheels at the magnet, which did
not cause any problems in control.

2) Rotating Mode: The rotating mode was tested by select-
ing five axes to rotate the dipole moment around at three selected
speeds (0.5, 1.5, and 2.5 Hz). The five axes were the x̂, ŷ, and
ẑ axes (see Fig. 2), and the omniwheel axes â1 and â3 . (Note
that ẑ and the omniwheel axis â2 are parallel.) To evaluate the
SAMM’s ability to drive the dipole moment to the desired ro-
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TABLE II
DIPOLE MOMENT WAS ROTATED ABOUT FIVE DISTINCT AXES FOR 30 S EACH

Note: ε⊥ is the RMS angular error from the desired plane and εκ is the RMS angular velocity error during the last 15 s of rotation. The settling time (ts ) is defined as the
time from rest to the dipole moment first crossing the desired plane. Bold response is shown in Fig. 7.

Fig. 6. (a) Inset shows the mean ± standard deviation of the convergence time
to the desired heading with random changes in heading of angular magnitude θ.
50 trials were performed for each angular magnitude. (b) Best and worst case
convergence time responses for each of the tested step-input magnitudes.

Fig. 7. Multiple views of a typical response using the rotating-mode controller
with the dipole heading starting 90◦ off the desired plane and κ̂ = â1 at 2.5 Hz.
The corresponding trial is bold in Table II.

tation plane, the dipole moment was started with a heading of
either 45◦ or 90◦ off the desired rotation plane. Table II gives
the RMS error in angular error off the desired rotation plane
(ε⊥), the time required to converge to the plane ts , and the
RMS error in angular speed (εκ). Note that ε⊥ and εκ were
both calculated from the last 15 s of each trial. Rotation axes
do not perform identically across the workspace as illustrated
in Table II due to nonlinearities and slight differences in the
omniwheels. As expected, ε⊥ generally increases as the angular
speed increases. Fig. 7 depicts a typical response with κ̂ = â1 at
2.5 Hz.

Fig. 8. (a) In prior work [1], a spherical UMD was rolled down a lumen using
a rotating field generated by a permanent-magnet actuator, whose position was
held stationary while its rotation axis was controlled appropriately. (b) For com-
parison, performing the same maneuver with the SAMM requires no motion
of the robot manipulator. (c) In another example from [1], the UMD is rolled
down a lumen while the permanent-magnet actuator’s position follows a trajec-
tory independent of the UMD’s position while its rotation axis was controlled
appropriately. (d) For comparison, when using the SAMM the manipulator’s
wrist only moves slightly to keep the SAMM in a constant orientation.

Next, we demonstrate the benefits of the SAMM relative to
previous permanent-magnet actuation technology. In [1], we
performed experiments where a spherical UMD was propelled
down a lumen using a rotating field generated by a cylindrical
permanent magnet as the UMD’s position p was continuously
measured by a stereo-camera system. The actuator magnet was
rigidly attached orthogonally to the shaft of a DC motor, which
was maneuvered in space by the same robotic manipulator used
in this paper to control the magnet’s rotation axis κ̂ according
to

κ̂ = Ĥ(p)κ̂h (36)

where κ̂h is the instantaneous magnetic-field rotation axis
that causes the UMD to roll down the lumen, and H(p) =
3p̂p̂T − I3 [1]. In one experiment, the UMD was rolled down
the lumen while the Cartesian position of the actuator magnet
was kept stationary [see Fig. 8(a)], which required the actuator-
magnet’s rotation axis, and thus the robot manipulator’s wrist,
to turn almost 180◦. For comparison, Fig. 8(b) shows a similar
experiment using the SAMM, but in this case the manipula-
tor remains completely stationary. In a second experiment, the
UMD was rolled down the lumen while the Cartesian position
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of the actuator magnet followed a step trajectory independent of
the UMD’s position [see Fig. 8(c)], and the necessary actuator-
magnet rotation axis from (36) caused the robot manipulator’s
wrist to contort dramatically (nearly violating joint limits at
t = 77 s). For comparison, Fig. 8(d) shows a similar experiment
performed with the SAMM. In this case, the manipulator’s wrist
remains nearly stationary throughout the trajectory, only chang-
ing slightly to keep the SAMM in a constant orientation. In
both experiments, the SAMM dramatically reduces the manipu-
lator motion required to perform the maneuvers. Note that both
experiments were possible with the SAMM held in a constant
orientation, demonstrating that a much simpler robot manipu-
lator (e.g., a Cartesian gantry robot) could have been used to
accomplish the same results.

IX. CONCLUSION

We have presented the spherical-actuator-magnet manipu-
lator (SAMM), which is a singularity-free permanent-magnet
robot end-effector for magnetic manipulation. The SAMM uses
three omniwheels to enable holonomic control of a spherical
magnet’s heading and enable the magnet’s rotation axis to be
set arbitrarily. The SAMM performs closed-loop control of its
magnet’s heading using field measurements obtained from Hall-
effect sensors as feedback, combined with modeled dynamics,
using an extended Kalman filter. We experimentally character-
ized the quasi-static error in the estimate of the dipole’s heading
to be 1.5◦ ± 0.6◦ (mean ± standard deviation). We described
the operation and construction of the SAMM, developed and
characterized pointing-mode and rotating-mode controllers, and
demonstrated remote actuation of an untethered magnetic de-
vice in a lumen. Prior work in magnetic manipulation using
permanent-magnet actuation was limited by robot joint limita-
tions and singularities, but the SAMM end-effector substantially
eliminates these limitations.
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CHAPTER 3

SIX-DEGREE-OF-FREEDOM LOCALIZATION

OF AN UNTETHERED MAGNETIC CAPSULE

USING A SINGLE ROTATING MAGNETIC

DIPOLE

The work in this chapter was co-advised by Dr. Jake Abbott and Dr. Thomas Schmid

and was published in IEEE Robotics and Automation Letters. It is reproduced here without

modification. It first develops a capsule approximately 1.2 times larger than commercial

capsule-endoscope devices embedded with magnetic sensors. A 6-DOF localization al-

gorithm is described that assumes the capsule has approximately no net motion (i.e., the

applied field is rotated above the step-out frequency such that the capsule is not able to re-

main synchronously rotating with the field). A simple propulsion scheme is implemented

where the capsule’s movement is periodically paused to re-localize to ensure the pose

estimates are sufficiently accurate. The experimental results utilized the SAMM device

described in Chapter 2. Table II is not formatted correctly in the published work, the

corrected version is shown in the Errata.

c©2017 IEEE. Reprinted, with permission, from K. M. Popek, T. Schmid, and J. J. Abbott,

“Six-Degree-of-Freedom Localization of an Untethered Magnetic Capsule Using a Single

Rotating Magnetic Dipole,” IEEE Robotics and Automation Letters, February 2017.
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Six-Degree-of-Freedom Localization of an
Untethered Magnetic Capsule Using a Single

Rotating Magnetic Dipole
Katie M. Popek, Thomas Schmid, and Jake J. Abbott

Abstract—This paper presents a method to estimate the six-
degree-of-freedom pose of a magnetic capsule, with an embedded
permanent magnet and Hall-effect sensors, using a rotating dipole
field. The method’s convergence properties as a function of the
number of distinct rotation axes of the applied field and the num-
ber of complete rotations about each axis are characterized. Across
our tested workspace, the localization error was 4.9 ± 2.7 mm and
3.3 ± 1.7 degrees (mean ± standard deviation). We experimentally
demonstrate this is sufficient for propulsion of a screw-type mag-
netic capsule through a lumen using a single dipole to both propel
and localize the capsule.

Index Terms—Localization, medical robots and systems.

I. INTRODUCTION

W IRELESS capsule endoscopes are a promising diag-
nostic tool, providing the ability to view the entire

gastrointestinal tract with minimal patient discomfort. Their
effectiveness is currently limited due to their uncontrolled na-
ture, which causes the capsule to miss regions of interest. Re-
searchers have been investigating a variety of methods to ac-
tively propel and localize these devices to enable views of the
entire gastrointestinal tract painlessly and without anesthesia
[1]. Propelling capsules with magnetic fields is clinically fea-
sible [2], and utilizing magnetic fields has the benefit of being
able to propel/control [3]–[7] and localize [8]–[17] the capsule
using the same technology.

Previous work from our lab characterized the use of a sin-
gle rotating magnetic dipole positioned in space with a robotic
manipulator to propel a screw-type magnetic capsule in a lu-
men from any position [6]; our experimental verification previ-
ously relied on cameras to localize the capsule. In this paper,
we describe a companion localization method to estimate the
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six-degree-of-freedom (6-DOF) pose of a magnetic capsule with
no prior location information other than the bounds of its poten-
tial workspace, using the same magnetic field that is propelling
it. We then apply that estimate to propel a capsule in a lumen.

There are several previously published magnetic localiza-
tion algorithms, but most rely on external magnetic sensors and
are either not compatible with magnetic actuation [8]–[11] or
currently have a limited workspace [16]. Methods employing
internal magnetic sensors (i.e., inside the capsule) require the
addition of an accelerometer [12], [13], provide less than 6-DOF
information [12], [16], [17], or must manipulate the position of
the external magnetic source during localization [15], [17]. Fre-
quently, localization methods rely on complicated models of the
magnetic field [13]–[15], but in certain cases, which we exploit,
the external magnetic source can be modeled with the simpler
point-dipole equation.

This paper presents a localization method that solves for the
6-DOF pose of a magnetic capsule while it is either stationary or
in the “step-out” regime where the field is rotating too quickly
for the capsule to rotate synchronously with the field. Similar
methods for pose detection in rotating magnetic fields exist [14],
[18], but our new method is more robust to sensor noise and data
synchronization issues because it utilizes all field-sensor data in-
dependently instead of relying solely on the estimated maximum
and minimum field magnitudes throughout a rotation cycle, and
the entire 6-DOF pose is solved simultaneously rather than solv-
ing for position and orientation sequentially. Previous methods
only rotated the field about a single axis, but we show that us-
ing additional rotation axes improves accuracy. Our improved
localization method was briefly introduced in [19]. In this pa-
per, we provide further experimental validation and analysis of
the convergence properties, and we experimentally demonstrate
this method’s accuracy is sufficient to propel a magnetic cap-
sule by combining the localization method and our previously
published propulsion method [6].

The paper is organized as follows: Section II details our lo-
calization method. Section III describes our experimental hard-
ware. Section IV simulates the expected results based on our
method (II) and hardware (III). Section V provides experimen-
tal verification. Finally, Section VI demonstrates propulsion of
a capsule using our localization method to provide position and
heading feedback.

II. LOCALIZATION METHOD

Assume that the rotating magnetic dipole (i.e., the external
magnet) is positioned in space by a robotic manipulator, and

2377-3766 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Overall system setup with the robot frame origin (or ) at the center
of the external magnetic source and the capsule frame (oc ) at the center of the
capsule’s internal permanent magnet.

the dipole is located at the center of the robot’s tool frame, or ,
which is also our reference frame. The capsule’s coordinate-
frame origin, oc , resides at the center of the capsule’s internal
magnet. There exists some vector pc that corresponds to the dis-
placement between the two coordinate-frame origins as shown
in Fig. 1. There also exists a rotation matrix, Rc , that rotates the
capsule’s coordinate-frame to align with the robot’s. By solving
for the position vector, pc , and the rotation matrix, Rc , the cap-
sule’s position and orientation relative to the external magnetic
source is known.

The following assumptions were made in developing this
method: 1) The position and orientation of the external dipole
moment, mr , are known relative to a global frame. 2) mr is
rotated about an axis Ω̂ such that mT

r Ω̂ = 0 is always true
(throughout this paper, we use the “hat” symbolˆ to indicate
a unit vector). 3) The capsule is free to move, but the dipole-
field rotation is well above the step-out frequency, such that
we can assume no net motion, and decouple the localization
and propulsion of the capsule; existing state-estimation methods
can be used to ensure this is true [20]. 4) The field of the
external magnet can be accurately modeled by the point-dipole
equation [21]:

b(pc) =
µ0

4π||pc ||5
(
3pcp

T
c − I||pc ||2

)
mr =

µ0

4π||pc ||5
Bmr

(1)
where µ0 is the permeability of free space, I is the identity
matrix, and B = B(pc) is a symmetric matrix. In our setup, we
use a spherical permanent magnet as the external source, which
is accurately approximated by (1); errors introduced by other
external-magnet geometries are quantified in [22].

Consider a set of n magnetic sensors embedded inside the
capsule, each with a constant known position offset, δi , and
orientation, si , expressed in the capsule frame. The position
vector, pi , describing the position of sensor i in the robot frame,
is pi = pc + Rcδi . The scalar magnetic-field projection mea-
sured at each sensor is found by projecting (1) onto the measur-
ing axis of the sensor, si :

bi(pi) = sT
i RT

c

µ0

4π||pi ||5
(
3pip

T
i − I||pi ||2

)
mr (2)

From [23], a rotation matrix can be reduced to three variables
using its exponential form:

Rc = eS{k} (3)

Fig. 2. A diagram depicting our localization method.Bm is an array of sensor
measurements in one batch of data, M is the set of mr corresponding in time
to each set of n sensor measurements in Bm , and q is the capsule’s state, which
is iteratively updated from an initial guess.

where S{k} is a skew-symmetric matrix packing of the angle-
axis representation k = k̂θ.

The capsule’s full 6-DOF pose is represented by q =[
pT

c kT
]T . We use the nonlinear least-squares Levenberg-

Marquardt algorithm [24] to estimate the capsule pose by min-
imizing the cost function c = ||Bm − Be ||2 , where Bm is an
array of the measured magnetic field readings, and Be is an ar-
ray of the magnetic field readings estimated by (2). A diagram
of our method is shown in Fig. 2; the capsule’s state is iteratively
manipulated using the Levenberg-Marquardt algorithm until a
minimum c is found. We use a numerically approximated Ja-
cobian in our testing, both in MATLAB (calculated by default
when using lsqnonlin()) and in C++ with the NonLinearOpti-
mization module of the Eigen library [25].

A static magnetic field does not provide enough information
to uniquely determine the capsule’s pose; additional data must be
obtained by either translating or rotating the external dipole. This
method can be utilized in applications with any changing applied
magnetic field that can be modeled by (1), however, this paper
deals exclusively with a rotating dipole field to be consistent with
our previous propulsion method [6]. Using a dipole field that
rotates about only one axis will result in limited information in
certain configurations; for example, if the dipole is located along
the axis of rotation of the capsule, the field’s magnitude along
the capsule’s axis may remain constant throughout the rotation
of the dipole. As detailed in [18], there also exist multiple poses
in the workspace that produce the same magnetic field if the
dipole is rotated about only one axis. Because we do not have
prior knowledge of the capsule’s pose, the choice of a single
Ω̂ for robust localization across the entire workspace is not
feasible. To span the workspace, we chose to populate Bm by
rotating the dipole source about its three coordinate-frame axes
(xr ,yr , zr ) successively for a single dataset. The number of
distinct Ω̂ and the amount of data needed for the algorithm to
converge is explored in Section V.

III. EXPERIMENTAL HARDWARE

A. Magnetic Dipole Source

The experimental setup is shown in Fig. 3(a). The spherical-
actuator-magnet manipulator (SAMM) [26] is used as the ex-
ternal dipole. The device provides a singularity-free method for
controlling a spherical permanent magnet’s dipole orientation
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Fig. 3. (a) The experimental setup with the SAMM mounted on the end-
effector of a 6-DOF robotic arm, the stereo vision system used for ground truth,
and our capsule constrained to a lumen where it is free to rotate about its long
axis, but not translate. (b) The test fixture used to rigidly mount the sensor array.
(c) Experimentally tested positions of the dipole are denoted by red dots and
their corresponding direction vectors in the capsule’s frame. The distance to the
capsule was varied.

by using three mutually orthogonal omniwheels to generate
rotation about arbitrary axes. The SAMM is mounted as the
end-effector on a Yaskawa Motoman MH5 6-DOF robotic ma-
nipulator. We chose our workspace to span between 75–200 mm
from the center of the permanent magnet to ensure a high signal-
to-noise ratio. Its size is limited by a combination of the strength
of the prototype SAMM’s permanent magnet and the sensitivity
of the Hall-effect sensors. Due the homothetic property of mag-
netic fields, if the SAMM’s magnet radius were scaled by η the
field measured at ηp would be the same as that measured at p
with the original magnet. Tested locations were normalized by
the radius ρ of the SAMM magnet, which is 25.4 mm, to enable
our results to generalize to other magnetic field sources. The
effect of increasing the sensor’s sensitivity is not as straight-
forward because of the exponential decrease in magnetic field
magnitude with distance, but typically more sensitive sensors
have a smaller range and thus less measurement noise. When
using higher sensitivities, one should ensure the sensing range
is large enough to accommodate the desired range of external
field measurements when combined with offsets from the inter-
nal magnetic field.

To quantify the accuracy of the proposed localization method,
the capsule was mounted with accuracy of 1.5 mm and 3◦ us-
ing the test fixture shown in Fig. 3(b). The SAMM was moved
relative to the fixed position of the capsule along seven direc-
tions spread throughout an octant of the workspace as shown in
Fig. 3(c). The distance ||pc || was varied between 4ρ to 8ρ. At
each location, the SAMM’s position was held constant and mr

was rotated about seven different rotation axes, for five complete
rotations each, to characterize the convergence properties of the
localization method. Ten trials were completed at each loca-
tion for statistical analysis. To ensure the tests with a stationary
capsule give comparable results to more clinically realistic sce-
narios, the capsule was also tested in a lightly lubricated clear
acrylic tube where it was free to rotate (Fig. 3(a)). The SAMM’s

Fig. 4. (a) A magnetic dipole field has regions where the field vector points
in a single cardinal direction, denoted by dashed/dotted lines. Place bz sensors
along the red dashed lines and by sensors in regions denoted by the black dotted
lines (with bx sensors placed analogously). (b) An isometric view of our final
sensor layout with each sensor labeled with its measured field direction, and its
position offset in mm with respect to the center of the magnet. The gray sensors
are not visible from this angle, but are located at the negative counterpart of the
corresponding sensor. (c) The sensor array (i.e., the hardware implementation
of (b)) surrounding a permanent magnet. (d) The communications electronics.
(e) Our capsule compared to Given Imaging’s colon capsule. Along with the
electronics shown in (c) and (d) it contains coin cell batteries on each end.
The wires connnecting the batteries to the electronics run along the inside of the
capsule and are not visible.

maximum rotation speed is 3 Hz; to ensure the capsule remained
in the step-out regime, these tests were performed at ||pc || = 7ρ.
Closer distances could be achievable using an electromagnetic
dipole source such as an Omnimagnet [27] and localizing with
rotation speeds of 20–30 Hz, or by constructing a faster SAMM.

B. Prototype Capsule

This method was designed to be used in conjunction with a
magnetic capsule with Hall-effect sensors embedded. One of
the major problems associated with internal magnetic sensors,
if used in conjunction with magnetic propulsion, is their close
proximity to the capsule’s internal magnet, whose field may
dominate the external field we are trying to sense. One op-
tion is to employ large-range sensors, but these typically have
more noise associated with their measurements at the signals
of interest. An alternative, which we first presented in [20], is
to strategically surround the internal magnet with six one-axis
sensors that have negligible biasing in the sensor measurements
from the internal magnet’s field. Assuming the capsule’s internal
magnet can be modeled using (1), there are positions where the
magnetic field points in a single cardinal direction as illustrated
by the dashed/dotted lines in Fig. 4(a). By using a one-axis Hall-
effect sensor, which measures the field component orthogonal
to its surface and ignores all other field components, it is pos-
sible to place the sensor such that the internal magnet’s field is
parallel to the sensor’s surface and provides negligible interfer-
ence in its measurements. For example, the sensors measuring
the field component in the zc direction are placed at locations
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where the field vector lies solely in the xc − yc plane. These
positions, denoted by dashed red lines in Fig. 4(a), lie along a
line drawn out from the middle of the magnet at an angle of
approximately 55◦ measured from mc . The bx and by sensors
are placed in regions parallel and perpendicular to mc , denoted
by black dotted lines in Fig. 4(a). Using this strategy, we placed
six sensors, one on each side of a cube, to provide two sensors
in each of the three cardinal axes. As a cubic magnet is not
perfectly modeled by (1) in the region where the sensors are
placed, our final sensor positions were confirmed using finite-
element-analysis software. The final sensor layout is illustrated
in Fig. 4(b) and was chosen to be as close as possible to the ideal
while still being feasible within our hardware constraints.

The sensor array was created using six printed circuit boards
(Fig. 4(c)); on each was placed a one-axis Allegro A1392 linear
Hall-effect sensor with a range of ±62 mT and a sensitivity
of 25 V/T. The boards were mounted directly to the 108 mm3

cubic NdFeB Grade N52 magnet in the layout shown in Fig. 4(b).
Using our sensor configuration, the maximum offset from the
internal magnet is 8.2 mT, which is measured by a by sensor.
The average field offset across all six sensors is 2.9 mT. This is
a significant improvement over the naive alternative of placing
the bz sensor along the zc -axis at 4.0 mm, similar to the bx and
by sensors; the field from the capsule’s magnet at this position
was measured by a Hirst GM08 gaussmeter as approximately
300 mT, which would saturate the sensor and make it useless.
The small constant biases can be subtracted in software because
the sensors remain fixed relative to the internal magnet.

The four-layer circular board (Fig. 4(d)) contains all the com-
ponents to wirelessly transmit the six sensor readings to a com-
puter. A Texas Instruments CC2530 microcontroller (MCU)
was chosen for its low-power consumption and its internal
transceiver. The MCU uses an interrupt-based approach to tran-
sition between the capsule’s states and execute functions that
require constant timing intervals. During a test, the sensors are
read every 10 ms, but are sent wirelessly in batches of five
readings per sensor at 20 Hz back to the computer. Before trans-
mission, the measurements are timestamped on the MCU. The
MCU and PC clocks are synchronized to ensure each mr is cor-
rectly attributed to its corresponding sensor measurements by
sending a flag to the MCU to start its timers at a known PC time.
Two 1.55 V silver-oxide Energizer 386/301 watch batteries were
used to power the capsule, which typically last one hour. The
batteries and electronics were incorporated into a 3D-printed
capsule as shown in Fig. 4(e).

The capsule used here (Fig. 4(e)) is a scaled down version
of the one first presented in [20]. It is approximately 1.4 times
the length of commercial capsule endoscopes and 1.2 times
the width, with a length of 42 mm and diameter of 13.5 mm,
not including a 1 mm helical thread used for propulsion. For
comparison, Fig. 4(e) shows our capsule with Given Imaging’s
colon capsule along with a U.S. quarter. The size is constrained
by the batteries. With these components a 1.2-scaled capsule
was originally designed, but our batteries’ steel casings be-
came magnetized in the rotating field and created an unmod-
eled disturbance resulting in poor pose estimation. As a result,
we lengthened our capsule slightly to mitigate this problem.
In the future, custom non-magnetic batteries could be utilized;

Fig. 5. Assuming the origin is located at the center of the external magnetic
source, the workspace is restricted to a hemisphere in the negative zr direction.
Poses were randomly generated across the workspace, depicted by dots. The
five initial states corresponding to the bottom rows of Table II are depicted in
planes (a) and (b).

commercial low-magnetic batteries do not meet both our size
and power constraints [28].

C. Sensor Calibration

Assuming the magnitude of the SAMM’s dipole and each
sensor’s position offset is known, the sensitivities and orienta-
tions of the sensors were estimated using a constrained nonlinear
least-squares algorithm to ensure accurate measurements. The
sensor array was placed in the rigid test fixture (Fig. 3(b)) and
the SAMM was moved relative to the capsule in a grid pattern
(60 (w) × 60 (d) × 20 (h) mm3) in 10 mm step increments,
with the center of the grid 110 mm above the capsule; mr was
fixed throughout the test. A single dataset combined from two
trials with dipole orientations of [0 0 1]T and [0 0.707 0.707]T

was used. The sensitivity and orientation of each of the six sen-
sors was solved simultaneously by estimating the readings using
(2) and comparing them to the sensor measurements using the
cost function e = ||Vm − Ve ||2 . The comparisons were done in
terms of the voltage output of the sensor because the sensitivity
constant (α) that converts volts to mT was unknown. Vm is an
array of voltage readings from the six sensors, and Ve = Beα.
A total of 24 parameters were estimated: the fixed 6-DOF pose
of the capsule, and three parameters for each of the sensors (the
2-DOF pointing orientation s, and the scalar sensitivity α).

To evaluate the results of our sensor calibration, we compared
the localization results using both the original nominal sensor
values and the calibrated values across 210 tests with ||pc ||
spread evenly between 4ρ, 6ρ, and 7ρ. The nominal values
(before calibration) resulted in a mean error of 4.9 mm and 7.8◦,
and a maximum error of 10.0 mm and 12.6◦. The mean error
using the calibrated values was reduced to 4.1 mm and 3.0◦ with
the maximum error reduced to 8.6 mm and 6.2◦.

IV. CHARACTERIZATION USING SIMULATIONS

Initial testing of the localization method was performed with
a MATLAB simulation based on our experimental hardware,
as depicted in Fig. 5. The origin of the SAMM’s magnet was
centered on the top surface of the workspace, whose plane lies
orthogonal to the zr axis. A spherical workspace was chosen to
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TABLE I
COMPONENTS WHERE NOISE AND UNCERTAINTY WERE ADDED TO IMITATE

EXPERIMENTALLY MEASURED RESULTS

Source of error range

Sensor noise ±0.114 mT
Time difference between sensor and dipole readings ±2 ms
Capsule position uncertainty 1.5 mm
Capsule orientation uncertainty 3◦

Dipole position uncertainty 0.5 mm
Dipole orientation uncertainty 2.4◦

Dipole magnitude uncertainty ±5%

test positions uniformly; it can be reduced to a hemisphere in
our application of capsule endoscopy because the capsule will
reside in the human body, whose local tangent plane can be
drawn to cut the spherical workspace in half. Due to hardware
constraints, the capsule cannot be closer than 3ρ to the center of
the SAMM’s magnet, so the hemisphere shape is further reduced
to a spherical shell that spans from 3ρ to 8ρ as shown in Fig. 5.
Each of the tested 6-DOF poses were randomly generated from
the workspace.

In ideal conditions, if no noise or uncertainty is modeled,
the algorithm estimates the capsule’s pose with only rounding
error in both the position (4.6 × 10−14 mm) and orientation
(3.4 × 10−14 ◦), across 100 random poses. However, the sen-
sor array and the dipole field have uncertainties, and signals
are noisy, so a more realistic simulation was conducted where
noise and uncertainties were added. These sources, which were
derived from our experimental hardware, are listed along with
their ranges in Table I. Note the sensor noise remains constant,
so as ||pc || increases, the magnitude of the external field and the
signal-to-noise ratio decrease, resulting in worse localization.
The position and orientation uncertainty, both for the capsule
and dipole source, stem from how accurately our ground truth
is known. The time difference is a result of our time resolution.
Including the noise and uncertainty resulted in an error of 2.2±
0.8 mm and 1.7◦ ± 0.9◦ across 100 random poses (through-
out this paper all errors are reported as the mean ± standard
deviation). The orientation error is in terms of the angle-axis
representation.

A known limitation of iterative methods is their dependence
on the initial condition; if it is not in close proximity to the
global minimum (the true capsule pose) the method may con-
verge to a local minimum and result in poor localization. We do
not assume prior knowledge of the capsule’s pose, so the initial
guess was chosen directly below the SAMM centered vertically
in the hemispherical workspace with an orientation matching
the external magnetic source’s frame. Across 1,000 random
poses, 98.7% resulted in a average error of 2.3 ± 1.0 mm and
1.8◦ ± 0.8◦. The remaining 1.3% converged to an incorrect local
minimum, typically, a pose that mirrors the true capsule pose.
To ensure safety, we desire an algorithm that always converges
to the global minimum.

One option to overcome the problem of local minimums is
using an additional algorithm to estimate an initial condition
that will be in close proximity to the optimal pose [10], and our
previous non-iterative algorithm could be used to provide an
initial guess [18]. Another option is to choose multiple initial

TABLE II
PERCENT CONVERGENCE TO TRUE CAPSULE POSE USING VARIOUS INITIAL

STATES WITH POSITION VECTOR pc IN MM AND ORIENTATION
ANGLE-AXIS k IN RAD

Initial Initial Tested Convergence
State pc State k poses

[0 0 − 140]T [0 0 0]T 1000 98.7%
[−81 − 81 − 81]T [0 0 0]T 1000 99.4%

[81 81 − 81]T [0 0 π
2 ]T

[−81 − 81 − 81]T [0 0 0]T 1000 99.8%

[110 − 30 − 81]T [ π
2 0 0]T

[−30 110 − 81]T [0 π
2 0]T

[−81 − 81 − 81]T [0 0 0]T 10000 99.9%

[110 − 30 − 81]T [ π
2 0 0]T

[−30 110 − 81]T [0 π
2 0]T

[0 0 − 140]T [0 0 π
2 ]T

[−99 − 99 0]T [0 0 0]T 10000 100%

[135 − 36 0]T [0 π
2 0]T

[−36 135 0]T [0 0 π
2 ]T

[−81 − 81 − 81]T [0 0 π ]T

[81 81 − 81]T [ π
2 0 0]T

conditions spread throughout the workspace and select the one
that results in the minimum norm in the residual error between
the sensor measurements and their estimates. Because we have
a known workspace, if the algorithm converges to a position
outside of the workspace (e.g., pc has a positive z component)
it is not considered a failure; instead, the initial conditions are
modified by adding randomly generated noise from a uniform
distribution on the interval ±70 mm to each position compo-
nent and a rotation on the interval of ±45◦ about a random axis
and the algorithm is run again. If the algorithm converges to
a position inside the workspace that is not within 10 mm of
the true capsule pose, it is considered a failure. We found using
five structured initial conditions was sufficient for 100% conver-
gence across 10,000 random poses. The five initial conditions
are split across two planes in the hemispherical workspace as
shown in Fig. 5. Other tested initial configurations along with
their convergence rate to the true capsule pose are shown in
Table II. Converging outside of the workspace is extremely
rare, it occurs less than 0.5% of the time, when using five initial
conditions. If a larger workspace is used, additional initial states
may be necessary.

If there is prior knowledge of the capsule’s pose, using a sin-
gle initial condition that is within 5 cm and 90◦ was sufficient
to converge to the capsule’s true pose every time over 10,000
randomly chosen poses. When used for capsule endoscopy, the
initial localization will have no prior information about the cap-
sule, but for subsequent tracking, the position of the capsule will
generally be in close proximity to the previous position. How-
ever, prior knowledge of the capsule’s orientation will be much
less certain, particularly considering the use of rotating fields.
By reducing the bounds on the position to 3 cm, the orientation
constraints could be relaxed to 180◦ and still converge to the true
pose in 99.9% of cases across 10,000 randomly chosen poses.

V. EXPERIMENTAL RESULTS AND DISCUSSION

When localizing the capsule, there is a trade-off between ac-
curacy and the time to collect the sensor data. Fig. 6 compares
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Fig. 6. Comparison of the effect of the angular velocity of the applied field and
number of rotation axes on the accuracy of the localization. Data is represented
as mean ± standard deviation over 70 trials for 2 Hz (black dot) and 3 Hz
(red x). The standard deviation for one axis was too large to show graphically.
(a) shows the results from a capsule rigidly mounted at 6ρ, and (b) show results
for a capsule in step-out at 7ρ. The inset depicts the additional four axes used
when testing seven rotation axes.

the average and standard deviation in error across different ro-
tation speeds ||Ω|| and number of rotation axes. Intuitively, the
rotation speed of the dipole field should not substantially influ-
ence the accuracy of the localization if both data sets use the
same number of complete dipole rotations and are below the
Nyquist frequency such that no aliasing has occurred; our tests
confirm this. The data sets in Fig. 6 each include 10 trials from
seven positions, for a total of 70 trials. There is no appreciable
difference between ||Ω|| = 2 Hz or 3 Hz. Larger ||Ω|| are rec-
ommended because the time required to collect the localization
data is reduced.

Fig. 6 also shows the error when rotating the dipole field
about one, two, three, or seven distinct rotation axes. One full
rotation of data is collected about each axis. For one axis, Fig. 6
combines the data from all three coordinate axes (xr ,yr , zr )
considered individually, and for two axes Fig. 6 combines the
data across the three possible combinations of axes (xr and yr ,
xr and zr , yr and zr ) considered individually. The additional
four axes chosen when rotating about seven axes are shown in
the inset of Fig. 6. Rotating about two axes provides a signifi-
cant advantage over one; an increasingly diminishing return in
accuracy results when adding additional rotation axes. When the
capsule is rigidly mounted (Fig. 6(a)), there is a 12% reduction
in position error when using three axes instead of two; the error

TABLE III
COMPARISON OF ERROR (MEAN ± STANDARD DEVIATION OVER 70 TRIALS)

FOR ONE AND FIVE ROTATIONS ABOUT xr , yr , AND zr

Rotations

Pose 1 5

Rigid, 6ρ 4.0 ± 1.7 mm, 2.6 ± 1.2◦ 3.9 ± 1.7 mm, 2.6 ± 1.2◦

Step-out, 7ρ 5.7 ± 3.0 mm, 4.9 ± 2.4◦ 5.6 ± 2.9 mm, 4.7 ± 2.4◦

TABLE IV
POSITION (MM) AND ORIENTATION ERROR (MEAN ± STANDARD DEVIATION

OVER 10 TRIALS) OF CAPSULES RIGIDLY MOUNTED (4ρ TO 8ρ) AND IN
STEP-OUT (7ρ). DATA COLLECTED BY ROTATING THE EXTERNAL FIELD ONCE

AROUND EACH OF THREE ORTHOGONAL AXES AT 3 HZ. SEE FIG. 3(C) FOR
LOCATION DEFINITIONS

Rigid? Y Y Y N Y
Location 4ρ 6ρ 7ρ 7ρ 8ρ

001 2.8 ± 0.4 2.8 ± 0.7 4.9 ± 1.3 4.5 ± 1.6 4.0 ± 1.0
2.7◦ ± 0.6◦ 3.4◦ ± 0.8◦ 2.4◦ ± 0.8◦ 4.3◦ ± 0.8◦ 2.9◦ ± 1.0◦

011 4.2 ± 2.0 4.1 ± 1.6 5.6 ± 1.9 4.9 ± 1.7 8.1 ± 3.4
2.8◦ ± 1.9◦ 1.7◦ ± 0.3◦ 2.1◦ ± 0.8◦ 6.6◦ ± 2.0◦ 2.4◦ ± 1.2◦

111 4.0 ± 0.9 3.4 ± 1.4 5.5 ± 1.8 11.5 ± 1.8 4.6 ± 2.4
4.2◦ ± 0.3◦ 2.1◦ ± 0.9◦ 4.0◦ ± 0.9◦ 6.3◦ ± 1.0◦ 2.0◦ ± 1.0◦

101 3.6 ± 1.0 5.9 ± 1.4 6.1 ± 0.8 6.8 ± 2.3 7.6 ± 2.5
3.5◦ ± 0.7◦ 1.9◦ ± 0.6◦ 3.0◦ ± 0.6◦ 6.3◦ ± 1.0◦ 2.8◦ ± 1.3◦

100 2.8 ± 1.2 4.9 ± 1.6 4.7 ± 2.5 3.5 ± 1.6 11.7 ± 3.8
3.4◦ ± 0.6◦ 2.9◦ ± 0.8◦ 3.1◦ ± 0.7◦ 1.6◦ ± 0.9◦ 4.6◦ ± 1.4◦

110 3.5 ± 0.6 4.3 ± 0.9 6.8 ± 1.4 4.5 ± 1.4 7.0 ± 1.3
1.8◦ ± 0.4◦ 1.7◦ ± 0.4◦ 2.0◦ ± 1.4◦ 7.2◦ ± 0.3◦ 2.1◦ ± 0.8◦

010 2.3 ± 0.6 2.4 ± 1.2 3.5 ± 1.3 3.9 ± 1.0 3.1 ± 0.9
5.5◦ ± 0.6◦ 4.8◦ ± 0.4◦ 3.5◦ ± 0.9◦ 1.9◦ ± 1.0◦ 3.4◦ ± 0.5◦

is reduced an additional 8% between three and seven axes, but
the time to collect the data more than doubles. A capsule in the
step-out regime (Fig. 6(b)) has a larger disparity, with a 15%
reduction in position error between two and three axes and less
than 1% additional reduction when increasing to seven axes. For
the remainder of this paper we chose to rotate about the three
robot-frame coordinate axes as it provides a good balance be-
tween speed and accuracy. For more time-sensitive applications,
rotating the external field about a set of any two orthogonal axes
will provide similar results.

Next, we tested whether collecting more data about each
of the three rotation axes (xr ,yr , zr ) would provide a more
accurate pose estimate. Table III shows that using more than
one rotation about each of the three orthogonal axes leads to
negligible improvement in accuracy. This is true both when the
capsule is held stationary and when it is free to rotate in the
step-out regime.

Table IV shows the localization error with distances vary-
ing from 4ρ to 8ρ, which in our setup is approximately 100–
200 mm. All reported errors used one rotation of the dipole field
at 3 Hz about each of the three robot-frame coordinate axes. As
expected, the error increases as the distance increases. In our
setup, there are six signal-to-noise ratios, one for each sensor, at
8ρ all have fallen below 10:1. This results in large increases to
the variance of the position errors in certain directions (011, 111,
101, 100; see Fig. 3(c)), which implies these regions are more
sensitive to noise and uncertainty. Actuating and localizing near
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the “radial” positions of (001, 010) is recommended because
these have the lowest mean error, and the control authority of
the desired rotation axis is the most robust to localization errors
[29]. According to the simulation, the algorithm should perform
equally well across the entire workspace; the differences we see
experimentally across locations are likely due to environmental
factors such as unmodeled magnetic disturbances.

For comparison, results from both a rigidly fixed capsule
and one that was free to rotate during the test are provided in
Table IV for 7ρ. The position error when the capsule is free to
rotate is comparable to that when it is held rigid. This is expected
as the field is rotating above the step-out frequency such that
the capsule has little net motion in these tests. The notable
exception is in direction 111. It is unclear why this location
performs consistently worse in the step-out regime than when
rigidly fixed. The rigidly held capsules, which do not rely on
battery power, give the best-case results. In an attempt to further
isolate the batteries from the sensor array by lengthening the
capsule by 4 mm, the error at 111 was cut almost in half, to
6.4 ± 1.0 mm. The remaining locations are already consistent
with the rigidly fixed capsules.

The orientation error reported in Table IV is half of what we
reported in our preliminary presentation of this method [19].
Subsequent to that publication, we performed additional cali-
bration on the sensor array and SAMM device and were able to
more accurately estimate the capsule’s orientation during test-
ing. As expected, the orientation error of the capsule in step-out
is worse than when rigidly held because its orientation is not
as accurately known and it changes slightly throughout the data
collection as it wiggles back and forth in the rotating field.

VI. DEMONSTRATION OF CAPSULE PROPULSION

A proof-of-concept propulsion system was designed that uti-
lizes the estimated pose from our localization method to propel a
magnetic capsule through both straight and curved lumens using
a single rotating dipole source for both propulsion and localiza-
tion. Although in the current form these are decoupled such that
the capsule’s movement is periodically paused to re-localize,
this provides the first step toward utilizing rotating magnetic
fields in a more clinically realistic fashion. The demonstrations
confirm that our localization method provides sufficient accu-
racy for propulsion using rotating dipole fields; all prior work
from our group relied on cameras for position feedback [6].

From [30], if a dipole source is rotated about an axis Ω̂, such
that its magnetic moment is always orthogonal to the rotation
axis, the applied field at any position in space rotates orthogonal
to some constant axis ω̂c . Assuming a screw-type capsule is
constrained to a lumen, at the capsule’s position, we desire ω̂c

to be aligned with the lumen (and the capsule’s principle axis
xc ) to provide a useful magnetic torque. Given the capsule’s
pose from our localization method, we calculate the actuator
magnet’s desired rotation axis, from [6]:

Ω̂ = B̂ω̂c (4)

where B is from (1). Prior to propulsion the capsule must be
localized. We assume the capsule is placed within our known

Fig. 7. A block diagram of the system used to propel the capsule through
the two lumen trajectories. q is the capsule’s state, ω̂ is the SAMM’s desired
rotation axis, ω̂c is the heading of the capsule, pc , des is the desired position of
the capsule (oc ) relative to the SAMM (or ) for propulsion, and t∆ is the time
interval between localizations. Note pc , des may be user-specified or the result
of an optimization routine.

workspace (in capsule endoscopy this would be the abdomen);
no additional information about the pose is required. In our
experimental demonstrations, the SAMM was started in an ar-
bitrary position above the approximate center of the workspace.
The first localization used five initial guesses as described in
Section IV. For the remainder of the trajectory, the previously
estimated pose was used as the initial condition for the iterative
algorithm. During the propulsion phase, we assume the cap-
sule’s position and heading remain constant. Prior to collecting
a batch of localization data, the SAMM was raised 50 mm in the
vertical direction to ensure the capsule would be in the step-out
regime. This additional movement of the SAMM is not neces-
sary for our algorithm; it was required due to our hardware’s
limited ||Ω||. Approximately one rotation about each of the
xr , yr , and zr axes in the SAMM’s coordinate frame was col-
lected. After each localization, the SAMM’s pose was updated
based on the capsule’s estimated state before resuming propul-
sion. A block diagram of the propulsion system is depicted
in Fig. 7.

When propelling the capsule through the straight lumen
(Fig. 8(a)), a configuration where the external magnet leads
the capsule was chosen because in these positions the attractive
magnetic force combines with the magnetic torque to result in
faster capsule propulsion than in “radial” positions [6]. It took
two minutes for the capsule to traverse the straight path with an
average forward velocity of 2.1 mm/s. Using the same propul-
sion system, the capsule was also propelled through a semi-
circular trajectory shown by the composite image in Fig. 8(b).
For this path, an arbitrary relative position was chosen to en-
sure our method can be generalized to any position. It took
approximately 6.5 minutes to complete the trajectory, with an
average speed of 1.4 mm/s. It should be noted that neither the
actuation configuration and parameters during the propulsion
phase nor the time between localizations have been optimized
in these demonstrations so it should not be assumed that we
have achieved maximum average speed. Additionally, the plas-
tic tubing does not accurately model intestine properties so these
velocities should not be assumed to be clinically realistic.
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Fig. 8. Experimental demonstration of capsule propulsion using the system
described in Fig. 7. (a) The SAMM was placed in a leading configuration with
pc , des = [0 58 − 100]T mm and ||Ω|| = 0.5 Hz during propulsion. (b) The
SAMM was placed in an arbitrary configuration with pc , des a function of the
capsule’s heading such that the SAMM’s relative placement to the capsule re-
mains constant regardless of the capsule’s heading with ||pc , des || = 100 mm
and ||Ω|| = 0.5 Hz during propulsion. The capsule’s propulsion was period-
ically paused for localization with t∆ = 12 sec in (a) and t∆ = 15 sec in
(b). Please see supplementary video.

VII. CONCLUSION

We have described and characterized a magnetic-localization
method that enables a screw-type magnetic capsule, equipped
with an embedded permanent magnet and Hall-effect sensors, to
be localized using a rotating magnetic-dipole field. We showed
the localization method provided accurate pose estimation to
within a few millimeters in position and a few degrees in orien-
tation throughout a usable workspace. This localization method
was developed as a complement to methods previously devel-
oped to propel a screw-type magnetic capsule using a single
rotating magnetic dipole. We experimentally demonstrated that
the localization is sufficiently accurate to enable the use of our
propulsion method with no other form of localization. The tar-
get application of this technology is active capsule endoscopy of
the small intestines, with potential for use in the colon as well.
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3.9 Errata

Table 3.5. Table 3.2 Reprinted With Correct Formatting. Shows the Percent Convergence
to True Capsule Pose Using Various Initial States With Position Vector pc in mm and
Orientation Angle-Axis k in rad.

Initial Initial Tested Convergence
State pc State k poses

[0 0 � 140]T [0 0 0]T 1000 98.7%

[�81 � 81 � 81]T [0 0 0]T
1000 99.4%

[81 81 � 81]T [0 0 p
2 ]T

[�81 � 81 � 81]T [0 0 0]T

1000 99.8%[110 � 30 � 81]T [p
2 0 0]T

[�30 110 � 81]T [0 p
2 0]T

[�81 � 81 � 81]T [0 0 0]T

10000 99.9%
[110 � 30 � 81]T [p

2 0 0]T

[�30 110 � 81]T [0 p
2 0]T

[0 0 � 140]T [0 0 p
2 ]T

[�99 � 99 0]T [0 0 0]T

10000 100%
[135 � 36 0]T [0 p

2 0]T

[�36 135 0]T [0 0 p
2 ]T

[�81 � 81 � 81]T [0 0 p]T

[81 81 � 81]T [p
2 0 0]T
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CHAPTER 4

SIMULTANEOUS LOCALIZATION AND PROPULSION

OF A MAGNETIC CAPSULE IN A LUMEN USING

A SINGLE ROTATING MAGNET

Prior work utilizing rotating magnetic fields for active capsule endoscopy required the

localization and propulsion to be decoupled (i.e., not simultaneous). This chapter details a

localization method that can estimate the full 6-DOF capsule pose while it is synchronously

rotating with the applied field. It presents a complete localization and closed-loop propul-

sion system that manipulates the actuator magnet’s position and rotation speed to maxi-

mize the capsule’s forward velocity. The method relies on the results in Chapter 3 for the

initial localization, and the experimental results utilized the SAMM device described in

Chapter 2. The ability to simultaneously localize and propel the capsule results in three

times faster propulsion speeds compared to the decoupled propulsion and localization

system described in Chapter 3. I am responsible for the bulk of this work while being

advised by Dr. Tucker Hermans and Dr. Jake Abbott. Arthur Mahoney’s contribution

resulted in Section 5.1 and Appendix B.

4.1 Introduction
Wireless capsule endoscopes, propelled by magnetic fields, promise a low-cost, min-

imally invasive method to view the entire gastrointestinal tract [1]. A small permanent

magnet is embedded inside the capsule, and all power needed to propel the device is

obtained from an externally applied magnetic field. Actuation methods typically either

use magnetic force for dragging or pulling [2, 3, 4], or magnetic torque for screw-like

propulsion of a capsule with a helical thread [5, 6, 7, 8].

One benefit of using magnetic fields for propulsion of capsule endoscopes is the op-

portunity for concurrent localization using the same magnetic field. There are several

magnetic-localization methods previously published; see [9] for a review. We focus our
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discussion on those using rotating magnetic fields, as they are compatible with our chosen

propulsion method [10]. Their time-varying nature also provides a constant influx of new

information to the system, preventing the need for additional sensors (e.g., an accelerom-

eter in the capsule). Prior localization methods typically assume the capsule has no net

motion during localization [11, 12], which prevents continuous propulsion. Kim et al.

developed an algorithm to localize a capsule as it rotates with the applied field [13], but

found in practice the capsule needed to be stationary to meet their desired performance

[5]. Son et al. describe a five-degree-of-freedom (5-DOF) localization algorithm using

externally placed sensors to estimate the capsule’s pose by measuring the field of the

capsule’s embedded permanent magnet [14], however, a full 6-DOF estimate is preferable

to optimize control of the capsule.

Prior work utilizing magnetic fields for on-line closed-loop control of capsule endo-

scopes has focused on dragging the capsule with magnetic forces [2, 3, 4]. Salerno et al.

developed a 2-DOF control system to measure forces during dragging tasks [3]. Taddese et

al. experimentally demonstrated 4-DOF closed-loop control of a tethered magnetic capsule

using magnetic field gradients [2]. Closed-loop propulsion with rotating fields previously

either utilized computer vision for localization [10], which is not practical for clinical use,

or required decoupled (i.e., not simultaneous) localization and propulsion [5, 12].

Recently, we presented the first demonstration of simultaneous localization and propul-

sion of a screw-type magnetic capsule using a single external magnetic dipole (which we

will refer to as the “actuator magnet” herein) to generate the applied rotating magnetic

field [15]. The magnetic localization method used an extended Kalman filter (EKF) to

estimate the full 6-DOF capsule pose as it continuously rotates with the applied field.

In this chapter, we present an extended treatment of the method introduced in [15], but

with a number of improvements. We compare the EKF’s performance, which is a first-

order approximation, with the Square-root Unscented Kalman filter (SRUKF), which can

approximate higher-order nonlinearities, and we find the SRUKF outperforms the EKF.

Both nonlinear Kalman filters use a simplified 2-DOF process model that assumes the cap-

sule’s movement is restricted to translation along and rotation about its principle axis. We

restrict the remaining 4-DOF in the process model and let the lumen dictate changes in the

capsule’s heading. In this chapter, the Kalman filter’s process model has been updated to
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adapt based on the capsule’s movement, improving the system’s robustness and enabling

the capsule to successfully traverse a highly heterogeneous environment (e.g., intestines).

Finally, in our previous work the placement of the actuator magnet relative to the capsule

was arbitrarily chosen. In this chapter, placement of the actuator magnet is optimized

to maximize the forward velocity of the capsule, subject to constraints on the actuator

magnet’s position (e.g., to prevent collision with a patient or other obstacles in the actuator

magnet’s workspace). Although [16] considered optimizing the actuator magnet’s position

relative to the capsule to maximize forward velocity, they did not consider the speed of the

applied rotating field, and the optimization was performed with a genetic algorithm prior

to experiments. This results in a constant desired position offset that is used throughout

their experiments, such that there is no ability to incorporate additional constraints or

adjust the actuator magnet based on the capsule’s current movement in the applied field.

This chapter provides a complete methodology to localize and propel a capsule in the

small intestines. The ability to move rapidly through the small intestines will be a critical

capability in any system designed to perform a complete scan of the gastrointestinal tract

in a timely manner. This chapter is also the culmination of many efforts from our group

in magnetic capsule endoscopy. The capsule is initially localized using the method of

[12]. It is propelled using the method of [10], with the permanent-magnet robotic end-

effector described in [17]. Finally, the capsule’s movement in the applied field is constantly

monitored (i.e., Is the capsule synchronously rotating with the field, is the capsule able to

rotate but the field is rotating too quickly for the capsule to remain rotating synchronously,

or is the capsule stuck?), using the method described in [18]. A block diagram depicting

the full localization and propulsion system is shown in Fig. 4.1. Each component is labeled

with its corresponding section.

4.2 Nomenclature
Throughout this chapter scalars are represented by italic lowercase font (e.g., s), vectors

are denoted by lowercase bold font (e.g., iv) where the optional superscript i denotes a

specific coordinate frame the vector is being expressed with respect to, and subscripts may

also be used in the naming convention. The “hat” symbol (e.g., v̂) denotes a vector of

unit length, and it can also represent the operation v̂ = v
‖v‖ . Matrices are represented by
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Adapt capsule’s 
process-model 
parameters (7)

Estimate initial capsule pose (6.2) 

Update capsule’s pose 
estimate using 
SRUKF (6.3)

Position actuator magnet above workspace  

Determine operating 
regime and status of 

capsule (6.1)

Lost?
Estimate capsule 
pose assuming it 
is stationary (6.2) 

Calculate optimal 
actuator-magnet position 

and lead angle (5)

Update actuator-magnet pose 
and adjust its angular velocity  

(4 & 8) 

yes

no

Figure 4.1. Block diagram depicting our localization and propulsion system. The numbers
correspond to the section in which each component is described.

uppercase bold font; for rotation matrices jRi the subscript i and superscript j denote the

starting and ending coordinate frames, respectively; this is also true for quaternions. In

is an n× n identity matrix. S[·] is the skew-symmetric matrix representation of the cross

product operation (e.g., S[a]b = a×b). Units are shown by standard font in curly brackets

(e.g., {m}).

4.3 Actuation and Sensing System
We will briefly describe the actuation and sensing system because it influences our

propulsion and localization methods discussed in subsequent sections. Our setup shown

in Fig. 4.2 uses the Spherical-actuator-magnet Manipulator (SAMM) [17], mounted on a

6-DOF robotic arm, for the actuator magnet. The SAMM uses three mutually orthogonal

omniwheels to generate singularity-free continuous rotation of its spherical permanent

magnet about arbitrary axes. The field of a spherical permanent magnet is nearly perfectly

approximated by the point-dipole model such that the applied field rbc {T} at the location

of the capsule’s magnet can be calculated with [19]:
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Figure 4.2. Overall system setup with the SAMM mounted as the end-effector of a robot
arm. The capsule’s coordinate frame originOc is placed at the center of its internal magnet,
the robot’s tool frame origin Or resides at the center of the actuator magnet, and oc and or
are the respective position offset vectors relative to a static world frame origin Ow placed
at the base of the robot. We enforce that the robot and world frames are aligned (i.e.,
wRr = I3).

rbc =
µ0

4π||rpc||3
Bc

rma (4.1)

Bc = 3rp̂c
rp̂T

c − I3 (4.2)

where µ0 = 4π × 10−7 {N·A−2} is the permeability of free space, ma {A·m2} is the mag-

netic moment of the SAMM’s actuator magnet, and rpc {m} is the position of the cap-

sule relative to the robot’s tool frame, expressed with respect to the robot tool frame

(see Fig. 4.2). Note that pc is frame invariant and can be expressed with respect to any

desired frame. Although we utilize the SAMM exclusively in this dissertation, the methods

presented here generalize to other magnetic-dipole sources as well (e.g., Omnimagnets

[20, 21]).

There are six Hall-effect sensors rigidly placed inside the capsule, surrounding its in-

ternal magnet but minimally effected by its field, as described in [12]. The position offset

cδi {m} of sensor i from the center of the capsule’s magnet along with the orientation of

the sensor’s measuring axis c β̂i are known and remain constant. The position vector to the



34

ith sensor from the robot’s tool frame is calculated as

rpi =
rpc +

rQc
cδi

rQ∗c (4.3)

where rQc is the quaternion representation of the rotation matrix rRc (see Appendix A).

The scalar measurement of sensor i is the projection of the field onto the sensor’s measur-

ing axis:

bi =
µ0

4π||rpi||3
c β̂

T

i
rQ∗c (Bi

rma)
rQc (4.4)

where Bi is calculated with (4.2), utilizing (4.3).

4.4 Propulsion
We summarize the method of [10]. If a magnetic field bc is applied by the actuator

magnet on the capsule’s magnetic dipole moment mc {A·m2}, then a magnetic torque

τ {N·m} and force f {N} are generated on the capsule:

rτ = rmc × rbc = −rbc × rmc

= γ1S[Br
cm̂a]

Trm̂c = γ1Trm̂c (4.5)

rf = (rmc · ∇)rbc

= γ2

(
rm̂a

rp̂T
c +

(
rm̂T

a
rp̂c

)
I3 +

rp̂c
rm̂T

a Z
)

rm̂c

= γ2Frm̂c (4.6)

where Z and the scalar constants are defined as:

Z = I3 − 5rp̂c
rp̂T

c (4.7)

γ1 =
µ0‖rma‖‖rmc‖

4π‖rpc‖3 (4.8)

γ2 =
3µ0‖rma‖‖rmc‖

4π‖rpc‖4 . (4.9)

Note that the magnetic torque scales as ‖pc‖−3 and the magnetic force scales as ‖pc‖−4.

The magnetic torque causes mc to rotate in an attempt to align with bc. If the magnetic

field bc rotates continuously around an axis Ω̂c, then τ will cause the capsule to continu-

ously rotate, which is converted into screw propulsion via a helical thread. The rotation

axis of the capsule’s dipole moment, mc, tends to align with the field rotation axis Ω̂c over

time if possible.

If a dipole source ma is rotated around some arbitrary axis Ω̂a such that mT
a Ω̂a = 0 is
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always true, then at any point in space (e.g., the location of the capsule), the applied field

rotates orthogonal to a local axis Ω̂c. Assuming the capsule is constrained to a lumen, the

desired Ω̂c is parallel to the capsule’s principle axis x̂c and locally aligned with the lumen.

Given some desired rotation axis Ω̂c (based on the estimated capsule pose) the necessary

actuator magnet rotation axis is calculated by:

rΩ̂a = B̂crΩ̂c (4.10)

where Bc is from (4.2). As ma is rotated around Ω̂a, bc rotates around Ω̂c, updated as in

(4.1), with a magnitude that fluctuates elliptically as:

‖rbc‖ =
µ0‖rma‖
4π‖rpc‖3

√
1 + 3(rm̂T

a
rp̂c)

2. (4.11)

4.5 Optimal Propulsion
The method reviewed in Section 4.4 provides the means to set Ω̂a, given some position

offset between the capsule and the actuator magnet, and some desired Ω̂c. In this section,

a constrained nonlinear optimization is performed to establish the position offset between

the capsule and the actuator magnet, as well as the lead angle between the applied field bc

and the capsule’s dipole mc, that results in the maximum capsule velocity.

We assume the rotation axis of the field at the capsule (Ω̂c) and the capsule’s principle

axis (x̂c) are aligned for simplicity. For a capsule constrained in a lumen, the rotation

axis of the field can be set using (4.10) to ensure this assumption is valid. When the

applied magnetic field continuously rotates, the generated magnetic torque τ tends to

cause the capsule’s dipole moment mc to continuously attempt to align with the rotating

field. Friction generated between the capsule and the lumen wall, however, impedes the

alignment of mc to the applied field. The resulting misalignment is measured by the angle

α. We refer to α as the “lead angle.” In physical systems with negligible inertia, the lead

angle is largely a function of the strength of the capsule and actuator magnets’ dipole

moments, and in particular, the rotational friction that impedes the capsule’s ability to

align with the rotating magnetic field. In general, the lead angle can be controlled by

varying the rotation frequency of the applied field: when the field rotates very slowly (i.e.,

quasistatically) the lead angle is small. The lead angle tends to increase as the field rotation

frequency increases. If there is no magnetic force applied to the capsule, when the applied
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magnetic field rotates at the device’s step-out frequency (the maximum frequency where

the device can remain synchronized with the rotating field), the lead angle is α = 90◦.

4.5.1 Trade-Off Between Magnetic Force and Magnetic Torque

For every relative position pc, there exists a trade-off between the magnetic torque

magnitude ‖τ‖ and the magnetic force magnitude ‖f‖, which is determined by the lead

angle α: when α = 0◦ and the capsule dipole moment mc is approximately aligned with the

applied field bc, then ‖τ‖ is minimized (‖τ‖ ≈ 0) and ‖f‖ is maximized. When α = 90◦,

then ‖τ‖ is maximized and ‖f‖ is minimized. This is illustrated in Fig. 4.3.

Fig. 4.3(a) shows the maximum, minimum, and range of the magnetic force magnitude

(normalized by 2γ2) for lead angles α = 0◦ and α = 90◦ over one actuator revolution

plotted as a function of θ, which measures the angle between Ω̂a and p̂c. The maximum

force magnitude occurs when α = 0◦ and θ = 90◦, which is a “radial” position in which p̂c

is orthogonal to Ωc using the terminology of [10]. The minimum magnetic force magnitude

is 0, and occurs when α = 90◦ and θ = 0◦ or θ = 180◦. This effect was previously utilized

to propel a magnetic helical swimmer away from a strong permanent actuator magnet in

[22]. Note that the maximum magnetic force magnitude when α = 90◦ is always less than

the minimum magnetic force magnitude when α = 0◦ for any position p̂c.

Fig. 4.3(b) shows the maximum, minimum, and range of the magnetic torque magni-

tude (normalized by 2γ1) for lead angles α = 20◦ and α = 90◦ over one actuator revolution

plotted as a function of θ. The lead angle α = 20◦ was chosen for illustration, rather than

α = 0◦, because ‖τ‖ = 0 when α = 0◦ regardless of the position p̂c. The maximum

magnetic torque magnitude occurs when α = 90◦ and θ = 90◦, which is a radial position.

Comparing Fig. 4.3(a) with Fig. 4.3(b) illustrates the trade-off between magnetic torque

and force for the case when α = 90◦ (i.e., at step-out). The trade-off can be seen for any

angle of α in the range [0◦, 90◦] in Fig. 4.3(c) and Fig. 4.3(d), which show the maximum,

minimum, and range of magnetic force and torque magnitudes, respectively, as a function

of the position p̂c, parameterized by the angle θ. In radial positions (where θ = 90◦), it

is possible to maximize either force or torque magnitude depending on the lead angle. In

general, a large α results in maximizing magnetic torque, while a small α maximizes force.
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Figure 4.3. Illustrates the trade-off between magnetic force and torque magnitudes. The
magnetic force and torque magnitudes (normalized by 2γ2 and 2γ1, respectively) are
shown in (a) and (b), respectively, for two lead angles α, plotted as a function of the angle
θ that measures the angle between Ω̂a and the position p̂c. The maximum, minimum,
and range of normalized magnetic force and torque magnitudes are shown in (c) and (d),
respectively, for angles of α in the range [0◦, 90◦].

4.5.2 Propulsion With a Simplified Model

For a screw-type capsule in a lumen, the applied magnetic force and torque are con-

verted to the capsule’s spatial and angular velocity by the interaction of the capsule with

the lumen. This interaction can be complex, particularly if the lumen is soft and de-

formable as are the small intestines. We simplify our analysis of the propulsion of an

untethered capsule using a 2-DOF model that assumes the magnetic and friction torques

dominate any torque caused by inertia, and that the only component of the magnetic

force and torque contributing to the propulsion of the capsule is the component of the
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applied force and torque parallel to the lumen axis, which we denote by l̂. We assume

that the actuator magnet’s rotation axis is set according to (4.10) such that Ω̂c is always

instantaneously parallel to the capsule’s principle axis x̂c, which in turn is approximately

parallel to the lumen axis l̂ (i.e., l̂ = x̂c or l̂ = −x̂c depending on the desired direction of

motion in the lumen).

As the capsule enters a turn, the geometry of the lumen will cause the capsule’s axis x̂c

to deviate from the rotation axis of the applied field (Ωc) by an angle Ψ, as shown in Fig. 4.4.

If Ψ is relatively small, the resulting magnetic restoring torque will also be small and

the capsule will continue to rotate because of compliance in the magnetic field. We have

previously shown that our propulsion method is robust to these types of misalignments

[23]. The capsule’s heading is updated based on the sensor measurements and the capsule

is continually tracked and propelled throughout the curve. In this way the capsule is not

steered around curves; rather, it is simply driven forward and it naturally adapts to curves.

The force and torque are mapped to the capsule’s spatial velocity vc and angular veloc-

ity ωc by the propulsion matrix Λ:
[ rvc

rωc

]
=

[
Λ1 Λ2
ΛT

2 Λ3

] [ rf
rτ

]
= Λ

[ rf
rτ

]
, (4.12)

where Λ1, Λ2, Λ3 ∈ R3×3 are matrices that depend on friction, and properties of the cap-

sule’s geometry such as radius, helix geometry, etc. The assumption that components of

magnetic force and torque orthogonal to the lumen axis l̂ have no influence on propulsion

parallel to the lumen can be modeled by projecting the applied magnetic force and torque

onto the lumen axis, by

Λ1 = λ1
r l̂r l̂T, Λ2 = λ2

r l̂r l̂T, and Λ3 = λ3
r l̂r l̂T, (4.13)

where λ1, λ2, λ3 describe how the applied force and torque are related to spatial and

angular velocity. This model has been demonstrated to be a good approximation to the

behavior of magnetic helical swimmers in low-Reynolds number fluids [24] (as well as a

slightly more complex 6-DOF variant [25]).

4.5.3 Constrained Optimization of the Average Forward Velocity

The capsule’s velocity is a result of the combined instantaneous applied magnetic force

and torque. Since, in general, the instantaneous direction and magnitude of the applied
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Figure 4.4. Depiction of how the lumen will cause the principle axis of the capsule, x̂c, to
lead the rotation axis of the applied field, Ωc, by some angle Ψ as the capsule is driven
“forward”. The turn is then sensed and incorporated by the localization algorithm to
update the “forward” direction.

torque τ and force f vary as the actuator magnet rotates, the capsule’s spatial and angular

velocities parallel to the lumen axis (approximated with (4.12) and (4.13)) also vary in time.

We propose approximating the net torque and force behavior using the average magnetic

torque τ̄ and force f̄ and optimizing for the capsule’s average spatial velocity, v̄c. See

Appendix B for derivations of τ̄ and f̄ and the accuracy of using the average magnetic force

and torque to approximate the instantaneous values. Assuming the propulsion matrix is

constant, the average spatial velocity v̄c and angular velocity ω̄c are given by:
[ rv̄c

rω̄c

]
= Λ

[ r f̄
rτ̄

]
. (4.14)

As shown in Fig. 4.3, there is a trade-off between the force and torque. At any point

in time, the capsule’s propulsion parameters (λ1, λ2) determine whether magnetic torque

or force contributes more to the capsule’s spatial velocity. By adjusting the position of the

actuator magnet relative to the static world frame or = Or − Ow (see Fig. 4.2), and the

lead angle α, which is controlled by the rotation speed of the actuator magnet, we can

maximize the spatial velocity of the capsule. This constrained optimization problem can

be formulated as:

max
α,or
‖v̄c‖2 =

(
λ1l̂Tf̄(α, or) + λ2l̂Tτ̄(α, or)

)2
(4.15)

subject to:

l̂ · vc ≥ 0 (4.16)

n̂ · pt ≥ pmin (4.17)
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where the cost function derived from (4.14) rewards higher average forward velocities. τ̄

and f̄ are nonlinear functions of α and or derived in Appendix B.

In our implementation, there are two inequality constraints. (4.16) ensures the velocity

is positive so the capsule moves in the desired “forward” direction. We also need to ensure

the actuator magnet does not collide with the patient’s abdomen (a parametric surface is

defined in our setup, but it could be detected optically or through other methods). The

closest point on the surface to the current actuator magnet’s position is determined (Ot)

and the tangent plane is computed (see Fig. 4.5). We define an auxiliary vector pt = or −
ot, where ot is the position of Ot relative to Ow. (4.17) constrains the actuator magnet’s

position to remain on the outside of the tangent plane, by a minimum distance of pmin

where n̂ is the surface normal and pmin ≥ r where r is the radius of the actuator magnet.

We only consider a single obstacle here, but if there were more than one obstacle, each

would be handled accordingly [26].

We use sequential quadratic programming (SQP) to solve the nonlinear constrained

optimization problem with the SNOPT library [27]. A locally optimal solution is found

by iteratively solving a series of quadratic programming subproblems that maximizes the

Langrangian of (4.15) subject to its linearized constraints. The analytic solutions of the

partial derivatives of the cost function and constraints with respect to or and α are derived

in Appendix C.

4.6 Localization
To use the optimized propulsion system described in the previous section, the full

6-DOF pose of the capsule must be estimated to control for the lead angle. We have

developed two localization algorithms; one for use with capsules which have negligible

net motion [12], and the other for use with capsules synchronously rotating with the

applied field; introduced in [15]. To determine which of the localization methods to use,

we first must estimate the capsule’s regime.

4.6.1 Detecting the Capsule’s Operating Regime

At any given time, the capsule will be operating in one of three regimes: 1) The capsule

is rotating synchronously with the applied field. 2) The capsule is in the “step-out” regime
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pc

n˄
pt

*

Figure 4.5. The closest point on the patient’s abdomen to the actuator magnet is deter-
mined (Ot, shown with a *), and a local tangent plane and surface normal n̂ are computed.
The actuator magnet is constrained to remain outside of the tangent plane such that the
n̂ · pt ≥ pmin where pt is the relative offset between the actuator magnet and Ot.

where the external field is rotated too quickly for the capsule to remain synchronously

rotating. When this occurs the capsule rotates erratically back and forth trying to align

with the field with little net motion. 3) The capsule is stuck (i.e., effectively stationary).

We only need to distinguish whether or not the capsule is synchronously rotating with the

external field because the method of [12] can be used to estimate the pose of a capsule that

is either stationary or in step-out. We have previously shown that knowledge of the lead

angle, α, which is the angle between the applied field bc and the capsule’s dipole moment

mc, is sufficient to distinguish this [18]. To summarize, if the lead angle remains relatively

constant over a full rotation of the external field, the capsule must be synchronously rotat-

ing with the field, but if the capsule is stationary or in step-out, α will periodically change

signs (see Fig. 4.6). To prevent false positives that may occur when the capsule is rotating

synchronously with a lead angle near zero, in addition to the sign change, the condition

that |α| > π/2 rad must be met at least once in a given rotation to determine that the

rotation is not synchronous.

4.6.2 Initial Localization of a Stationary Capsule

Initially, we assume no precise prior location information, just that the capsule is placed

somewhere in a known workspace (e.g., the patient’s abdomen). The origin of the cap-

sule’s frame,Oc, is located at the center of its internal magnet, the origin of the robot’s tool

frame, Or, is placed at the center of the external dipole source, and the static world frame

is chosen to reside at the base of the robot, as shown in Fig. 4.2. We assume the robot’s tool

frame is at some known offset from the world frame or, but that it is constrained to remain
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Figure 4.6. The lead angle (α) over time for a tested trajectory with the external field
rotating at 0.25 Hz. When the capsule is synchronously rotating with the field, α remains
relatively constant. If the capsule is in step-out, the lead angle will oscillate between±180◦.

aligned with the static world frame such that wRr = I3. We will solve for the capsule’s

6-DOF pose, comprising position rpc and orientation rRc, relative to the robot’s tool frame.

While it may be beneficial to transform the position and orientation to a static world

frame for clinical applications, in terms of controlling the capsule, the robot’s tool frame is

preferable because all magnetic equations are derived with respect to the actuator magnet.

As the pose of the robot’s tool frame is known from the forward kinematics, and we solve

for the 6-DOF capsule pose relative to this frame, it is trivial to transform the capsule’s

pose into any other desired coordinate frame using a homogeneous transformation.

Assuming the capsule has no (or approximately no) net motion, using magnetic field

measurements from sensors embedded in the capsule, and rotating the actuator magnet

about multiple orthogonal axes, it is possible to determine the 6-DOF capsule pose relative

to the external source (i.e., in the robot’s tool frame) to within a few millimeters and a few

degrees of the true capsule pose using the method from [12]. Here, we modify the method

for use with quaternions, since we previously employed the exponential formulation of a

rotation matrix.

The capsule’s full 6-DOF pose is represented by a 7×1 state vector rs =
[

rpT
c

rQT
c

]T
.

The capsule’s pose is estimated by minimizing the cost function ||Bm − Be||2 using the

Levenberg-Marquardt algorithm, where Bm is an array of the measured magnetic field

readings corresponding to a single rotation of the actuator magnet about each of the xr,
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yr, and zr axes, and Be is an array of the magnetic field readings estimated by (4.4). As

the initial pose is unknown, five initial guesses, which are spread throughout the possible

workspace, are used. The estimated pose resulting in the minimum norm of residual error

between the estimated and measured sensor readings is chosen.

In this chapter, the same process just described is also used to localize the capsule if

it has been determined “lost” or “stuck” (i.e., the uncertainty of the estimate is above a

desired threshold, or the capsule has been stationary for an extended period of time).

4.6.3 Real-Time Localization of a Nonstationary Capsule

In our original implementation we utilized the EKF [15]. Here, we compare the EKF

results to the SRUKF, which provides a gradient-free approach to match higher-order

nonlinearities. Both of the nonlinear Kalman filters use the following system model to

describe the capsule’s motion and measurements:

st = G(st−1, ut−1) + gt−1 (4.18)

yt = H(st, ut) + ht (4.19)

where st is the capsule’s state at time step t, ut−1 is the input to the system at the previous

time step, G models the system dynamics, yt are the estimated observations, H is the

measurement model, and gt ∼ N (0, Qt) and ht ∼ N (0, Nt) are the zero-mean process and

measurement noise parameters with known covariances of Qt and Nt, respectively. Both

of the nonlinear Kalman filters have the same high-level algorithmic structure, alternating

between a prediction step based on a process model and an update step that refines the

prediction based on the sensor measurements.

4.6.3.1 Process Model Implementation

The same state introduced in the initialization step is used in the Kalman filters: rs =

[rpT
c

rQT
c ]

T. The system input consists of the actuator magnet’s pose (position and dipole

orientation) ru =
[

roT
r

rma
T
]T

. To estimate the capsule’s dynamics, the propulsion model

introduced in Section 4.5.2 is used, where the capsule’s helical thread translates magnetic

force and torque into forward and angular velocity (4.12). The magnetic torque and force

can be calculated from (4.5) and (4.6), respectively.

Instead of updating the entire 7×1 state in a single function, the position and orienta-
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tion are updated individually and combined:
[ rpc

rQc

]
=

[
Gp(rst−1,r ut−1)

T

GQ(rst−1,r ut−1)
T

]
. (4.20)

The position is updated using:

rpc,t =
rpc,t−1 + ∆trvc (4.21)

where ∆t is the time between discrete updates.

The incremental change in orientation can be found by transforming the angular veloc-

ity into a unit quaternion,

Q∆ = cos
( ||rωc||∆t

2

)
+

rωc

||rωc||
sin
( ||rωc||∆t

2

)
(4.22)

which we use as a rigid-body operator to update the orientation:

rQc,t = Q∆
rQc,t−1. (4.23)

Note, Q should always be normalized after any update to ensure the rotation equations

from Appendix A are valid.

The process model noise is difficult to measure, so the covariance was tuned experi-

mentally to provide desired tracking. All states are assumed independent, such that Q is

nonzero only along its diagonal. Due to the slow nature of capsule endoscopy, we know

the capsule’s next position will be in close proximity to its previous position and place high

certainty on the position’s process model (the upper left 3×3 submatrix of Q, which have

units {m2}). The capsule’s orientation is less certain because of the rotating fields and this

is reflected in the chosen values (bottom right 4×4 submatrix of Q, which are unitless):

Q = diag(0.001, 0.001, 0.001, 100, 100, 100, 100) · 10−5.

4.6.3.2 Measurement Model Implementation

This method is a recursive variant of the original algorithm presented in [12] and

similarly assumes there are n magnetic sensors rigidly embedded inside the capsule (in

practice we use n = 6). The measurement model H estimates the sensor measurements

by projecting the expected dipole field onto the sensor’s measuring axis using (4.4). The n

measurements are combined into a column vector:

H(rpc,
rQc, rma, D) =




bi(
rpi,

rQc, rma)
...

bn(rpn, rQc, rma)


 (4.24)
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where D is a 3× n matrix where the ith column corresponds to cδi and is used with rpc to

calculate rpi using (4.3). Each row in H is calculated using (4.4).

The measurement noise covariance matrix N {T2} was estimated using sensor data

from five locations spread throughout the workspace. Each sensor is assumed indepen-

dent so the resulting values were placed along the diagonal of the 6×6 matrix, with the

remaining values set to zero:

N = diag(51.1, 49.4, 48.4, 57.2, 49.7, 59.1) · 10−7.

4.6.3.3 Extended Kalman Filter

We use a discrete-time implementation of the EKF [28], assuming constant inputs be-

tween samples, and the system model in (4.18) and (4.19). The EKF method is shown in

Alg. 1. The a priori estimate predicts the next state s and its corresponding covariance P

from the process model G and is denoted by the − superscript. The measurement update

improves the a priori prediction by incorporating the observations to form the a posteriori

state estimate, which is denoted with a + superscript. The analytic solutions for Jacobian

matrices G (process model) and H (measurement model) are computed in Appendices D

and E, respectively.

4.6.3.4 Square-root Unscented Kalman Filter

Although the EKF is the most widely used state-estimation algorithm for nonlinear

systems [28], and it was the method we employed in [15], it has a few less-than-desirable

traits. First, if the system is highly nonlinear, the first-order approximation given by the

EKF may not be sufficient. Second, calculating the partial derivatives can be complicated

and time-consuming. The Unscented Kalman filter provides a gradient-free alternative

that is at worst a second-order approximation [29]. The basic philosophy is that, although

it is difficult to transform a probability density function through a nonlinear function, it is

simple to transform a single point. Choosing a set of points to approximate the desired

density function is also straightforward. If we have a known mean s̄ and covariance

P for some state vector s, we can choose a set of vectors known as sigma points whose

combined mean and covariance are s̄ and P. It is simple to then transform this set of points

using our nonlinear process and measurement models. A weighted combination of the
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Algorithm 1 EKF algorithm.
s is the state vector, P is the covariance matrix, z is a vector of observations, K refers to
the Kalman gain, G is the Jacobian of the process model, and H is the Jacobian of the
measurement model.

1: for t = 1, . . . , ∞ do
2: Time update equations: (a priori)
3: s−t = G(s+t−1, ut−1)

4: Gt−1 = ∂G
∂s

∣∣∣∣
s+t−1,ut−1

5:
6: P−t = Gt−1P+

t−1GT
t−1 + Qt−1

7: Measurement update equations: (a posteriori)

8: Ht =
∂H
∂s

∣∣∣∣
s−t ,ut

9: Kt = P−t HT
t (HtP−t HT

t + Nt)−1

10: s+t = s−t + Kt(zt −H(s−t , ut))
11: P+

t = (I7 −KtHt)P−t

resulting transformed vectors will provide an estimate of the true mean and covariance

that is equally good, or better, than the EKF. For more details regarding the unscented

transform see [28]. There is a trade-off when choosing the sigma points between accuracy

and computation time. We implemented the sigma points described by [30] because the

chosen 2j+1 sigma points (where j is the length of the state vector) and scaling factor κ

(where κ determines the spread of the sigma points) gives the ability to match higher-order

moments if the distribution is Gaussian.

X0 = s

Xi = s +
(√

(j + κ)P
)T

i
i = 1, . . . , j

Xj+i = s−
(√

(j + κ)P
)T

i
i = 1, . . . , j (4.25)

ϕ0 =
κ

j + κ

ϕi =
1

2(j + κ)
i = 1, . . . , 2j

X is a set of sigma points,
(√

(j + κ)P
)

i
is the ith row of the matrix

√
(j + κ)P, and ϕ is a

weight vector.

The square-root variant of the Unscented Kalman filter was implemented because of its

improved numerical stability [31] over the original Unscented Kalman filter. The SRUKF
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algorithm is described in Alg. 2. In this formulation, S is assumed to be the lower Cholesky

factor. It should be noted that some implementations (e.g., MATLAB) return the upper

Cholesky factor. The implementation of the SRUKF in Alg. 2 is O(N3); for more time-

sensitive applications, other implementations of the SRUKF may be beneficial [32].

4.7 Process Model Parameter Estimation
Our process model (Section 4.6.3.1) relies on knowledge of how the capsule’s helix will

transfer magnetic force and torque into forward and angular velocity from the propulsion

matrix (see (4.12)). This matrix has three free parameters (λ1, λ2, and λ3) which are

dependent on both the capsule and lumen. In our prior implementation [15], these pa-

rameters were experimentally estimated in the lumen prior to commencing trials. Ideally,

these parameters could be found on-line and change as the capsule moves through the

intestines, adapting to the capsule’s current environment. With this aim in mind, an

additional SRUKF was implemented in parallel for parameter estimation. The parameter

vector λ = [λ1 λ3 λ2]T is modified to minimize the error between the process model’s

estimate and the sensor readings. For physical realism, λ is constrained to positive values.

A modified SRUKF for use in parameter estimation is described in [31] and is shown in

Alg. 3. It is similar to the original SRUKF except the process model predicts that the next

estimate will be equivalent to the previous state (Alg. 3, line 3). An exponential weighting

factor, ζ, is used in place of the process noise covariance update.

In our implementation, the measurement model (Hr) is equivalent to the process model

of the state estimate SRUKF (Alg. 3, line 6). Instead of using sensor measurements, the

predicted state is compared against the observed state estimate st (Alg. 3, line 12). The

measurement noise covariance matrix Np was experimentally tuned to provide desired

results. Its units are the same as Q.

Np = I7 · 10−4

4.8 Complete Closed-Loop Localization and Propulsion System
A block diagram depicting the complete closed-loop localization and propulsion sys-

tem is shown in Fig. 4.1. Given the capsule’s estimated pose from either the initialization

or the nonlinear Kalman filter, and whether or not the capsule is rotating with the applied
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Algorithm 2 The SRUKF algorithm used for state estimation from [31].
s is the state vector, u is the input vector, z is a vector of observations, S is square-root
of the covariance matrix (P = SST), ϕ is a vector of weights defined in (4.25) κ is a
scaling factor influencing the spread of the sigma vectors (we use κ = 1), qr refers
to the QR decomposition, cUpdate is a rank-1 update to the Cholesky factorization (an
update or downdate is performed dependent on the sign of ϕ0), chol returns the Cholesky
factorization, sgn is the signum function, G is the function describing the process model,
and H is the measurement model. The subscripts on ϕ, X , and Y refer to the vector index.

1: for t = 1, . . . , ∞ do
2: X ∗t−1 = CALCSIGMAPOINTS(st−1, St−1, κ)
3: Time update equations: (a priori)
4: X ∗t|t−1 = G(Xt−1, ut−1)

5: s−t = ∑
2j
i=0 ϕiX ∗i,t|t−1

6: S−t = qr
([√

ϕ1(X ∗1:2n,t|t−1 − s−t )
√

Q
])

7: S−t = cUpdate
(
S−t ,X0,t|t−1 − s−t , sgn(ϕ0)

)

8: Xt−1 = CALCSIGMAPOINTS(s−t , S−t , κ)
9: Estimate observations:

10: Yt|t−1 = H(Xt|t−1, ut)

11: z̃t = ∑2n
i=0 ϕiYi,t|t−1

12: Measurement update equations: (a posteriori)
13: Sy = qr

([√
ϕ1
(
Y1:2j,k − z̃t

) √
N
])

14: Sy = cUpdate
(
Sy, (Y0,t − z̃t) , sgn(ϕ0)

)

15: Ps,z = ∑
2j
i=0 ϕi

(
Xi,t|t−1 − s−t

) (
Yi,t|t−1 − z̃t

)T

16: K =
(

Ps,z/ST
y

)
/Sy

17: s+t = s−t + K(zt − z̃t)
18: U = KSy
19: S+

t = S−t
20: for ρ = 1, . . . , columns of U do
21: S+

t = cUpdate
(
S+

t , U(:, ρ),−1
)

22: function CALCSIGMAPOINTS(s, S, κ)
23: Σ =

√
j + κST

24: X = [s, s + Σ, s− Σ]
25: return X
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Algorithm 3 The SRUKF algorithm used for parameter estimation from [31].
λ is the parameter vector, u is the input vector, st is the current observed state vector, Sλ is
square-root of the covariance matrix, $ is a vector of weights defined in (4.25), κ determines
the spread of the sigma vectors (we use κ = 1), ζ is an exponential weighting factor (we use
ζ = 0.9995), Hλ is the measurement model – in our implementation it is equivalent to G,
Np is the measurement noise covariance matrix, and jp is the length of λ. The subscripts
on $, X , and D refer to the vector index. Functions are defined in Alg. 2.

1: for t = 1, . . . , ∞ do
2: Time update equations: (a priori)
3: λ−t = λ+

t−1
4: S−λ,t = ζ−1/2S+

λ,t−1
5: Xt−1 = CALCSIGMAPOINTS(λ−t , S−λ,t, κ)
6: Estimate observations:
7: Dt|t−1 = Hλ(Xt|t−1, ut)

8: d̃t = ∑
2jp
i=0 $iDi,t|t−1

9: Measurement update equations: (a posteriori)
10: Sd = qr

([√
$1
(
D1:2n,k − d̃t

) √
Np
])

11: Sd = cUpdate
(
Sd,
(
D0,t − d̃t

)
, sgn($0)

)

12: Pλ,d = ∑
2jp
i=0 $i

(
Xi,t|t−1 − λ−t

) (
Di,t|t−1 − d̃t

)T

13: K =
(

Pλ,d/ST
dt

)
/Sdt

14: λ+
t = λ−t + K(st − d̃t)

15: U = KSd
16: S+

λ,t = S−λ,t
17: for ρ = 1, . . . , columns of U do
18: S+

λ,t = cUpdate
(

S+
λ,t, U(:, ρ),−1

)

field, the external dipole’s pose is updated optimally for forward capsule propulsion.

Pseudocode is given in Alg. 4. The actuator speed is adjusted to minimize the error

between α and αd, where αd is the result of the constrained optimization described in

Section 4.5.3.

In our experimental setup, the SAMM was mounted on the end-effector of a 6-DOF

robotic arm and used as our actuator magnet. Our prototype capsule was introduced in

[12] (see Fig. 4.7(a)). It measures 42 mm in length and 13.5 mm in diameter not including

the helix for propulsion. The capsule is embedded with six Allegro A1392 linear one-axis

Hall-effect sensors arranged surrounding a 108 mm3 cubic NdFeB permanent magnet. The

sensors are read at 100 Hz, but are wirelessly sent to the PC in batches at 20 Hz. The Kalman

filters were implemented as though each set of sensor data is received individually at the

appropriate times.
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Figure 4.7. Localization performance comparison of the EKF, SRUKF, and URTSS. (a) Our
prototype capsule embedded with a permanent magnet and six Hall-effect sensors was
introduced in [12]. Five trials from each of the straight (b) and curved (c) lumens were
used and the resulting mean and standard deviation of the position (d) and orientation
(e) error are shown. Black x’s correspond to the straight trajectory and the red dots to the
curved path.

Algorithm 4 Psuedocode to update the SAMM pose.
s is the estimated capsule state, u is the actuator magnet’s current pose, isRotating is
a Boolean representing the operating regime of the capsule, ||Ωa||t−1 is the actuator’s
rotation speed at the prior time step, and α is the current lead angle. Due to hard-
ware constraints, we have an upper threshold on the actuator’s rotation speed (ωmax =
3 Hz), the lower threshold ensures the actuator magnet always provides a rotating field
(ωmin = 0.25 Hz). pd and αd result from our optimization routine (Section 4.5.3) and are
the desired position offset between the capsule and the dipole source and desired lead
angle, respectively.

1: rpc ← s[1 : 3], rQc ← s[4 : 7]
2: rRc ← QUATERNIONTOROTATIONMATRIX(rQc)
3: rΩ̂c ← rRc(:, 1)
4: [pd, αd]←CALCULATEOPTIMALSAMMPOSE(s, u)
5: rpr,t ← rpc +

rpr,t−1 − rpd
6: ωa ← ‖Ωa‖t−1
7: Ω̂a,t ← Eq. (4.10)
8: if !isRotating then Ωa,t = Ω̂aωmin
9: else

10: if (α > αd & 0.99ωa ≥ ωmin) then
11: Ωa,t = 0.99ωaΩ̂a,t
12: else if (α < αd & 1.01ωa ≤ ωmax) then
13: Ωa,t = 1.01ωaΩ̂a,t
14: else Ωa,t = ωaΩ̂a,t
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4.8.1 Experimental Comparison of Kalman Filters

To compare the performance of the EKF and the SRUKF we tested each algorithm

on data logged from a set of ten trajectories where the capsule’s 5-DOF pose is known

using a stereo vision system. The data set included five trajectories through a straight

lumen (Fig. 4.7(b)) and five trajectories through a slightly curved lumen (Fig. 4.7(c)). In

the curved trajectory, the ground truth orientation was estimated by fitting a curve to

the camera data and extrapolating the tangent line at the current position. The SRUKF

significantly increased the localization accuracy compared to the EKF, with an average

reduction in error of 24% in position and 10% in orientation (see Fig. 4.7(d) and 4.7(e)).

Orientation error refers to angle-axis representation with respect to the capsule’s heading;

the capsule’s roll angle is not detected visually, so its error is not reported. We found

a significant statistical advantage (with 95% confidence) to using the SRUKF over the

EKF for both position and orientation in the curved-lumen trials. Although there was a

statistically significant advantage to using an SRUKF for position estimates in the straight

trajectories (with 90% confidence), we did not find any significant benefit to the use of the

SRUKF for orientation, although our data set is not large enough to definitively say that

there is no difference. We believe the difference in results between the straight and curved

trajectories is due to the increased nonlinearities and modeling inaccuracies present in the

curved-lumen trials.

We also implemented the Unscented Rauch-Tung-Striebel smoother (URTSS) to deter-

mine if increasing the time horizon (including future measurements) could further im-

prove our localization results. The URTSS works by passing through the data twice: A

forward pass through the data uses an Unscented Kalman filter to estimate the state,

and the smoothing solution is computed in a backward pass (for details on the URTSS

refer to [33]). Although the URTSS does slightly improve accuracy in straight trajectories

(Fig. 4.7(d) and 4.7(e)), we found no significant difference in using it over the SRUKF.

In the curved trials, the URTSS performs worse than the SRUKF (with 95% confidence).

The worse performance on the curved trajectories is likely due to our assumptions in the

process model that restrict the capsule to forward or backward motion along its principle

axis. Based on these results, all further demonstrations will use the SRUKF.
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4.8.2 Experiments in Phantom Intestines

In all experimental demonstrations, the placement of the actuator magnet and its rota-

tion speed are the result of the optimization routine described in Section 4.5. It maximizes

the capsule’s forward velocity, which is the result of a combination of two terms (λ1f) and

(λ2τ), where λ1 and λ2 change over time as a result of the parameter-estimation SRUKF.

The optimization tends to result in maximizing one of the terms with a desired θ (the angle

between Ω̂a and p̂c) of either θ = 0◦ or θ = 90◦. In general, to maximize the first term the

optimization tries to achieve a configuration where the actuator magnet is in front of the

capsule (θ = 0◦) and the field is rotated at slow speeds. However, the constraints often

prevent this from happening in reality. Note that although radial positions maximize force

magnitude (see Fig. 4.3), the maximum force magnitude does not necessarily translate to

maximum magnetic force in the desired propulsion direction. Positions in front of the

capsule are preferable, and chosen by our constrained optimization, because the magnetic

field gradients pull the capsule toward the actuator magnet. If the second term is max-

imized, the optimization generally results in the actuator magnet being placed directly

above the capsule (in a radial position θ = 90◦) at relatively higher rotation speeds, such

that α approaches 90◦ to maximize torque.

To illustrate the effect of the improvements we implemented since the system’s intro-

duction, we replicated the experiment from [15] using the Boston Scientific phantom of the

small intestines (Fig. 4.8). The magnitude of pc was set for consistency with the prior trial,

but instead of using a fixed desired position offset, in our current experiment pc is the

result of the constrained optimization function and the rotation speed ‖Ωa‖ is adjusted

to regulate α. Our improved system completed the trajectory in approximately a third

of the time reported in [15] with an average speed of 6.4 mm/s. Note the results in [15]

already tripled the average capsule speed from our previous decoupled localization and

propulsion system [12].

4.8.3 Experiments in Ex vivo Bovine Intestines

Additional tests were completed in fresh bovine intestines. Prior to each test, the

capsule was wrapped in polytetrafluoroethylene (PTFE) thread seal tape to waterproof

the capsule and protect the embedded electronics. The intestines were placed in a wet
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5 s

19 s

36 s

Figure 4.8. A reproduction of an experiment in [15] with ‖pc‖ ≥ 100 mm. The SAMM’s
position and speed are chosen based on the output from our optimization routine. Please
see supplementary video.

container such that the intestines were free to move. A clear plastic lid fixed the ends

of the intestines in place and was used to simulate the skin layer preventing the capsule

from leaving the workspace. The capsule successfully navigated seven of the nine trials

performed across three segments of intestines arranged in a tight U-shaped trajectory.

Table 4.1 intestine segments (a)–(c), detail the tested intestines and results in our initial

experiment.

The capsule was unable to complete a few segments of intestine, which were not re-

ported in Table 4.1. We believe these failures were the result of two main causes: (1)

Some segments of intestines had strictures that were too small for our currently over-sized

capsule to navigate. (2) The most common problem was that the intestines would twist

with the capsule, trapping the capsule such that it continues to rotate, but there is not

enough magnetic torque and force generated to continue its forward motion. This was

also the reason for the two failed attempts reported in Table 4.1. Typically, this resulted

when the actuator magnet was rotated at high speeds in a radial position attempting to

maximize torque. Note that while the intestines twisting resulted in several failed trials, it

is not always an issue. In some cases, the intestines will twist with the capsule and then

untwist after the capsule has moved through (see supplementary video). It is also likely

this will be less of problem in in vivo testing because connective tissue will likely make the

intestines more rigid than our current test setup.
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Table 4.1. Experimental Results for Tested U-Shaped Trajectories in Bovine Small In-
testines.

Intestine Segment
(a) (b) (c) (d)

‖Ωa,max‖ {Hz} 3.0 3.0 3.0 0.5
Length {mm} 635 381 559 483
Completed trials (3 attempts) 3 2 2 3
Mean v̄c {mm/s} 3.8 2.3 5.9 2.3
Min v̄c {mm/s} 3.4 2.3 5.1 1.3

To address the twisting issue, we subsequently tested an additional segment of intes-

tine but reduced the maximum rotation speed of the actuator magnet ‖Ωa,max‖ to 0.5 Hz

(Table 4.1, intestine segment (d)). With this new “low gear” method, the capsule success-

fully traversed a U-shaped trajectory in all three tested trials. In preliminary testing with

‖Ωa,max‖ = 3.0 Hz, the capsule was unable to complete a U-shaped trajectory on any of

the three attempts in intestine segment (d). If in vivo testing has similar twisting issues that

prevent the capsule’s forward motion, a propulsion method that further explores limiting

the capsule and actuator magnet’s rotation speeds should be explored.

Limiting the rotation speed of the actuator magnet typically results in a slower average

capsule velocity (v̄c), which is calculated as the total length of intestines traversed divided

by the completion time. Across the seven successful trials with ‖Ωa,max‖ = 3.0 Hz, v̄c

= 4.1 mm/s, this is reduced to 2.3 mm/s across the three trials when ‖Ωa,max‖ = 0.5 Hz.

Although, the results with ‖Ωa,max‖ = 0.5 Hz provide similar average capsule velocities

to those that resulted from intestine segment (b), the minimum v̄c when each successful

trial is considered individually is approximately half when the actuator’s speed is limited.

Fig. 4.9 depicts the trial resulting in the minimum average capsule velocity for each seg-

ment of intestine successfully navigated, corresponding to the bottom row in Table 4.1.

Note, when the capsule gets trapped in a fold (intestines segments (b) and (d)), this is

automatically detected using the method in Section 4.6.1. The capsule’s pose is relocalized

using the method described in Section 4.6.2 and then its propulsion continues.

For further demonstration, an S-shape trajectory was navigated in intestine segment (a)

with ‖Ωa,max‖ = 3.0 Hz (Fig. 4.10). This resulted in an average capsule speed of 3.5 mm/s.

In this trajectory, the capsule gets trapped in a fold, which is detected, and it is then re-
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Figure 4.9. Experimental demonstrations of simultaneous localization and closed-loop
optimal capsule propulsion through four distinct segments of intestines intially arranged
in a tight U-turn (where (a)–(d) correspond to the intestine segments described in Table
4.1). In all shown trajectories, the SAMM’s position and speed are chosen based on the
output from our optimization routine with ‖pc‖ ≥ 70 mm. Please see supplementary
video.

localized and the propulsion is continued.

At the slowest average speed (2.3 mm/s) traversing an average human small intestine

would take approximately 43 minutes (compared to the 150–180 minutes taken by food

due to peristalsis). In our current setup the actuator magnet must be in close proximity to

the capsule; in the bovine intestines (Fig. 4.9 and Fig. 4.10), we constrain ‖pc‖ ≥ 70 mm

(i.e., pmin = 70 mm). This is a result of the size of our prototype SAMM device. Due to

the homothetic property of magnetic fields, if we scaled the size of the external spherical

permanent magnet by η, the workspace size would also scale by η.

4.9 Conclusion
This chapter describes the culmination of efforts in our group to enable active wireless

capsule endoscopy by combining magnetic localization, propulsion, and proprioceptive

sensing into a single closed-loop localization-propulsion system. A Square-root Unscented

Kalman filter (SRUKF) is used in the capsule localization, and another SRUKF is used to

estimate the process model parameters, which change throughout the trajectory. An opti-
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110 s
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Figure 4.10. Experimental demonstration of simultaneous localization and closed-loop
optimal capsule propulsion through intestine segment (a) from Table 4.1 initially arranged
in an S-shaped trajectory with ‖pc‖ ≥ 70 mm. Please see supplementary video.

mization routine is utilized to calculate the desired actuator-magnet position and rotation

speed to maximize the capsule’s forward velocity. We demonstrate our system is able

to simultaneously localize and propel a magnetic capsule of approximately clinical scale

through tortuous bovine small intestines (ex vivo) using a single rotating dipole field for

both localization and propulsion.
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CHAPTER 5

DISCUSSION AND FUTURE WORK

This dissertation has explored advancements in closed-loop propulsion of wireless

capsule endoscopes using magnetic fields. There are several possible directions to further

advance this technology. This work briefly explored optimizing the trajectory of the actu-

ator magnet (for forward capsule propulsion), but this field remains largely unstudied for

applications in capsule endoscopy. For example, our current system described in Chapter

4 optimizes for a single time step and is only constrained by one obstacle. A clinical

system would likely have a more complex workspace and expanding the time horizon of

the optimization could provide a smoother trajectory by anticipating changes in direction

based on an obstacle that would present itself in the future.

The current experiments detailed in this dissertation are limited by the size of the

prototype capsule and SAMM devices. Possible future work includes designing a smaller

prototype capsule that is at the exact scale of commercially available devices including a

camera. Another active area of research involves trying to automatically classify features

from the video taken by capsule endoscopes [1]. Currently, clinicians manually go through

more than 50,000 images taken during the procedure and annotate those that are important

[1, 2, 3]. While it is possible to localize the capsule based on the video stream, it is limited

to the particular region (e.g., esophagus) [4]. Fusing the video data with the magnetic

localization algorithms explored in Chapters 3 and 4 could potentially improve the overall

capsule pose estimate. Alternatively, adding video data to the localization could give

fixed waypoints in the gastrointestinal tract (e.g, pylorus) to further refine the localization

estimate and its translation to the patient’s gastrointestinal tract rather than relying on the

relative distance between the actuator magnet and the capsule.

Although our current localization methods are sufficient for propelling the capsule on-

line, clinicians may desire a more accurate estimate of the capsule’s pose for procedures

that result from data the capsule acquired (e.g., locating and removing a legion). A more
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comprehensive process model may be used off-line in a post-processing step that does not

restrict the capsule to translation along and rotation about its principle axis (e.g., allows

rotation of the capsule’s heading). Use of a more realistic model would likely improve the

smoothing results given in Chapter 4.

Additionally, our results are limited to the small intestines, where the capsule is as-

sumed to be constrained to a lumen. Prior work has used a single permanent magnet to

levitate a magnetic capsule in a simulated fluid-filled stomach [5]. As it only provides

5-DOF control, it assumes the capsule’s dipole moment will align with the externally

applied field, and the capsule’s magnet was placed parallel to the capsule’s principle axis.

No control is needed over rotation about its principle axis. To provide a full exploration

of the gastrointestinal tract, exploring if this method could be reproduced with the same

magnet placement used in this dissertation (the capsule’s dipole moment perpendicular

to the principle axis of the capsule) should be explored. Further, using similar methods

of slowly aligning the capsule to a quasi-static field could provide additional degrees of

freedom to control the capsule’s heading (e.g., to image the entire intestinal wall in the

colon).

Next steps should include developing a larger SAMM device that can actuate the cap-

sule at clinically realistic distances (300 mm). This will enable further animal testing (e.g.,

navigating an entire porcine GI tract) and bring magnetic localization and propulsion

closer to a feasible clinical system.
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CHAPTER 6

CONCLUSION

This dissertation presents advancements in magnetic propulsion and localization of

screw-type capsules. A complete optimized magnetic localization-propulsion system was

presented that can successfully navigate complex trajectories in animal intestines.

A robotic end-effector that provides a singularity-free method of controlling a spherical

permanent magnet to rotate about any arbitrary axis was described. This end-effector

removes the need for a high-degree-of-freedom robotic arm and simplifies the control

strategy by removing singularity constraints. Because it relies on a spherical permanent

magnet, no inaccuracies are introduced into our localization models through the use of the

simple point-dipole equation.

A prototype capsule was designed embedded with Hall-effect sensors to sense the

capsule’s regime in the field and provide information needed to localize the full 6-DOF

capsule pose. The chosen sensor array layout increases the accuracy of the magnetic

field readings by removing the need for large-range sensors used in prior work. Two

localization methods were described. The first, used when the capsule has approximately

no net motion, can localize the full 6-DOF capsule pose to within 4.9 ± 2.9 mm and 3.3 ±
1.7 degrees (mean± standard deviation) across our tested workspace of 100 mm to 200 mm

with no prior location information. The second method uses a square-root variant of the

Unscented Kalman Filter to estimate the capsule’s pose as it synchronously rotates with

the applied field. A simplified process model was employed that restricted the capsule’s

movement along its principle axis. While the localization errors for the rotating capsule

are higher with 11.4 ± 2.6 mm and 10.9 ± 0.9 degrees, it is sufficiently accurate to propel

the capsule through complex trajectories.

A localization-propulsion system that uses the estimated capsule pose from either of

the localization methods and then calculates the optimal pose of the actuator magnet to

maximize the forward velocity of the capsule was described. An additional square-root
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Unscented Kalman filter was implemented to estimate the capsule’s propulsion param-

eters. The optimal pose of the actuator magnet changes based on the capsule’s current

movement in the field and is able to successfully navigate two trajectories in bovine in-

testines.

This dissertation’s results show the feasibility of a single rotating dipole to successfully

propel and localize a screw-type magnetic capsule in the intestines and encourages further

study to create a clinically realistic magnetically actuated capsule endoscope.



APPENDIX A

QUATERNION REVIEW

Quaternions are an alternative to rotation matrices for representing orientations and

rotations of Euclidean vectors [1]. Consider a rotation matrix R, which can be represented

in the angle-axis representation (θ, k̂). A quaternion Q is a 4×1 vector that is constructed

from the angle-axis representation:

Q =

[
q0
q

]
, q0 = cos

(
θ

2

)
, q = k̂ sin

(
θ

2

)
(A.1)

where q0 and q are the scalar and vector parts of the quaternion, respectively. A quater-

nion’s conjugate is defined as

Q∗ =
[

q0
−q

]
. (A.2)

Quaternion multiplication is not commutative and is defined as:

Q · K =

[
q0 −qT

q q0I3 + S[q]

] [
k0
k

]
. (A.3)

Quaternions can be used in a similar fashion to rotation matrices to rotate any arbitrary

vector ν into a different coordinate frame by conjugating ν by Q [2]:

jν = jQi
iνjQ∗i

=
(
q2

0 − q · q
) iν + 2q0q× iν + 2q

(
q · iν

)
. (A.4)

The inverse rotation is performed in a similar way:

jν = jQ∗i jνjQi

=
(
q2

0 − q · q
) jν + 2q0

iν× q + 2q
(

q · iν
)

. (A.5)

We frequently rotate vectors using quaternions in our process and measurement mod-

els in the Kalman filters, so the partial derivatives of (A.4) and (A.5) with respect to both

Q and ν are derived next.
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Π(ν,Q) = ∂QνQ∗
∂Q =

[
∂QνQ∗

∂q0

∂QνQ∗
∂q

]
(A.6)

where

∂QνQ∗
∂q0

= 2q0ν + 2q× ν (A.7)

∂QνQ∗
∂q

= 2
(

q0S[ν]T + qνT + (q · ν) I3 − νqT
)

(A.8)

and

Π∗(ν,Q) = ∂Q∗νQ
∂Q =

[
∂Q∗νQ

∂q0

∂Q∗νQ
∂q

]
(A.9)

where

∂Q∗νQ
∂q0

= 2q0ν + 2ν× q (A.10)

∂Q∗νQ
∂q

= 2
(

q0S[ν] + qνT + (q · ν) I3 − νqT
)

(A.11)

Υ(Q) = ∂QνQ∗
∂ν

= (q2
0 − q · q)I3 + 2q0S[q] + 2qqT (A.12)

and

Υ∗(Q) = ∂Q∗νQ
∂ν

= (q2
0 − q · q)I3 + 2q0S[q]T + 2qqT. (A.13)

The partial derivative of a quaternion with respect to its rotation vector is also required

for the EKF process model Jacobian. From [1], the derivative of a quaternion with respect

to its rotation vector k = θk̂ is:
∂Q
∂k

=

1
2||k||3




−k1‖k‖2sk −k2||k||2sk −k3||k||2sk
σ + k2

1ε k1k2ε k1k3ε
k1k2ε σ + k2

2ε k2k3ε
k1k3ε k2k3ε σ + k2

3ε




(A.14)

where

sk = sin
(‖k‖

2

)
(A.15)

ε = cos
(‖k‖

2

)
‖k‖ − 2sk (A.16)

σ = 2||k||2sk (A.17)

and k = [k1 k2 k3]T.
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APPENDIX B

ESTIMATING AVERAGE MAGNETIC FORCE AND

TORQUE OVER ONE ROTATION

The magnetic torque (4.5) and force (4.6) generated by the point-dipole model (4.1)

are functions of the actuator and capsule dipole moments, ma and mc, and the relative

position vector pc. They vary periodically (in magnitude and direction) as the actuator

magnet and capsule rotate. How the magnetic torque and force vary depends on two

factors: the lead angle α and the position direction p̂c. Due to the assumption that the

capsule dipole moment mc and the applied field bc are coplanar as they both rotate around

Ω̂c, the direction of the capsule dipole moment can always be represented as a linear

combination of a vector b̂c that is parallel to the applied field and a vector b̂
⊥
c = b̂c × Ω̂c

that is orthogonal to the applied field:

m̂c = c(α)b̂c + s(α)b̂
⊥
c (B.1)

where c(α) = cos(α) and s(α) = sin(α).

Representing m̂c in this way is useful since both the magnetic torque τ and the mag-

netic force f are linear with respect to m̂c. By substituting (B.1) into (4.5) and (4.6), it is

clear that the magnetic torque and force can be represented as linear combinations of the

torque and force produced when the capsule’s dipole moment is parallel to b̂c and b̂
⊥
c ,

respectively:

τ = c(α)γ1Tb̂c + s(α)γ1Tb̂
⊥
c = s(α)τ⊥ (B.2)

f = c(α)γ2Fb̂c + s(α)γ2Fb̂
⊥
c = c(α)f‖ + s(α)f⊥, (B.3)

where T is defined in (4.5), F is defined in (4.6), and the scalars γ1 and γ2 are from (4.8)

and (4.9), respectively. τ⊥ is the magnetic torque resulting from the component of mc

parallel to b̂
⊥
c , and f⊥ and f‖ are the components of magnetic force resulting from the
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components of mc parallel to b̂
⊥
c and b̂c, respectively. Note that there is no magnetic torque

component resulting from the component of the capsule dipole moment parallel to b̂c.

Representing the magnetic torque and force in this manner decouples analysis for any

lead angle α into the analysis of the magnetic torque and force when the capsule dipole

moment mc is parallel and orthogonal to the applied field bc as they both rotate.

Substituting b̂
⊥
c into (4.5) results in the expression for τ⊥ as:

τ⊥ = γ1‖Bcm̂a‖Ω̂c. (B.4)

Note that τ⊥ is parallel to Ω̂c since we have assumed that m̂c and bc are coplanar through

each rotation of bc and must also be mutually orthogonal to Ω̂c [1].

Substituting b̂
⊥
c and b̂c into (4.6) for m̂c results in the expressions for f⊥ and f‖ as:

f⊥ =
γ2

2‖Bcm̂a‖‖B−1
c Ω̂a‖

(
3(m̂T

a p̂c)
2d−

(
(m̂T

a p̂c)I3

+ (m̂T
a p̂c)p̂cp̂

T
c − 2m̂ap̂T

c

)
m̂⊥a

)
(B.5)

f‖ =
γ2

‖Bcm̂a‖
(

m̂am̂T
a −

(
1 + 4(p̂T

c m̂a)
2
)

I3

)
p̂c (B.6)

where

d = Ω̂a × p̂c (B.7)

m̂⊥a = m̂a × Ω̂a. (B.8)

The magnetic force component f‖ tends to be generally attractive in nature and f⊥ tends

to generally point in the same direction as d (i.e., neither attractive nor repulsive) for any

position pc.

To calculate the average magnetic torque τ̄ and the average magnetic force f̄, first the

parallel and orthogonal components are derived with equations (B.9), (B.11), (B.14). These

derivations assume the lead angle and the position offset remain constant throughout one

complete rotation of the actuator magnet. Note, it is unlikely that α remains constant

through one rotation unless the actuator’s speed is actively controlled for this purpose, if α

varies τ̄ and f̄ provide an approximation assuming a nominal α. The total average torque

and force, can be broken into components resulting from the capsule dipole moment being

orthogonal and parallel to the rotating applied field.
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The average magnetic torque when the capsule moment is orthogonal to the applied

field (such that α = 90◦) is denoted by τ̄⊥, and is calculated as:

τ̄⊥ =
1

2π

∮

2π
τ⊥dma =

2γ1

π
√

1− φ
E(φ)Ω̂c (B.9)

where

φ = 3‖d‖2/(1 + 3‖d‖2) (B.10)

φ is bounded by 0 ≤ φ ≤ 3/4 and E(φ) is a complete elliptic integral of the second kind.

Note that, except for a few special cases, there are no closed-form evaluations of ellip-

tic integrals, although efficient numerical methods are provided in most computational

mathematics software packages to compute them.

The average magnetic force when the capsule moment is parallel to the applied field

(α = 0◦) is denoted by f̄‖ and is

f̄‖ =
1

2π

∮

2π
f‖dma =

2γ2

π

(
M̄− (m̄ + 4p̂T

c M̄p̂c)I3

)
p̂c (B.11)

where

M̄ =

√
1− φ

φ

(
E(φ) + (φ− 1)K(φ)

)
êêT (B.12)

m̄ =
√

1− φK(φ) (B.13)

ê =
(

I3 − Ω̂aΩ̂T
a

)
p̂c and K(φ) is the complete elliptic integral of the first kind. The average

magnetic force when the capsule moment is orthogonal to the applied field (α = 90◦) is

denoted by f̄⊥ and is given by

f̄⊥ =
1

2π

∮

2π
f⊥dm̂a

=
2γ2

πφ

(
(2φ− 1)E(φ)− (φ− 1)K(φ)

)
d, (B.14)

which points entirely in the direction of d (from (B.7)) for all capsule positions.

Note that the path taken by ma in the contour integrals (B.9), (B.11), and (B.14) does

not vary in time. In reality, it is possible that the trajectory of ma may vary in time (e.g., to

control the lead angle α). The result of the integrals (B.9), (B.11), and (B.14), in time, will

be preserved if the trajectory of ma, beginning at time t0 and end at time t1, satisfies the

integral
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∫ t1

t0

ma(t)dt = 0. (B.15)

The orthogonal and parallel components of torque (B.9) and force ((B.14) and (B.11)) are

combined to find the total average torque and force for any constant α:

τ̄ = sin(α)τ̄⊥ (B.16)

f̄ = sin(α)f̄⊥ + cos(α)f̄‖ (B.17)

Note τ̄⊥, f̄‖, and f̄⊥ were derived with the assumption that α and pc remain constant

through one rotation of the actuator magnet, so these assumptions are inherent to the total

average magnetic torque and magnetic force as well.

Figure B.1 shows the accuracy of the averaged magnetic torque and force as an approx-

imation to the instantaneous torque and force as the actuator magnet rotates. Figure B.1(a)

shows the maximum, minimum, and range of the error between the average magnetic

force and the instantaneous magnetic force normalized by 2γ2 over one actuator-magnet

revolution for varying capsule positions, parameterized by the angle between Ω̂a and p̂c,

θ, and lead angles α. The force error is largest in radial positions (θ = 90◦) and when

the capsule dipole moment is aligned with the rotating field (α = 0◦). This is the same

configuration that maximizes the applied force magnitude.

Figure B.1(b) shows the maximum, minimum, and range of the error between the

average magnetic torque and the instantaneous magnetic torque normalized by 2γ1 over

one actuator-magnet revolution for varying capsule positions θ and lead angles α. The

minimum normalized torque error is 0 for all configurations of θ and α, which makes the

range of the normalized torque error equivalent to the maximum normalized torque error.

Comparing Figs. B.1(a) and B.1(b) shows that averaging better approximates the applied

magnetic force than the applied magnetic torque, in general.
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Figure B.1. Illustrates the accuracy of using the average magnetic force and torque to
represent the instantaneous magnetic force and torque. (a) The maximum, minimum, and
range of the error between the instantaneous magnetic force, f, and the average magnetic
force over one actuator-magnet revolution, f̄, normalized by 2γ2 (i.e., ‖f− f̄‖/2γ2), plotted
as a function of the capsule’s position relative to the actuator magnet parameterized by θ
and the lead angle α. (b) The maximum, minimum, and range of the error between the
instantaneous magnetic torque, τ, and the average magnetic torque over one actuator–
magnet revolution, τ̄, normalized by 2γ1 (i.e., ‖τ − τ̄‖/2γ1).



APPENDIX C

ANALYTIC SOLUTIONS FOR PARTIAL DERIVATIVES

USED IN SQP

The magnitude of capsule’s average spatial velocity is derived from (4.14) as:

‖v̄c‖ = λ1l̂Tf̄ + λ2l̂Tτ̄. (C.1)

This can be rewritten by projecting the average magnetic force (B.17) onto l̂ and recogniz-

ing that l̂Tf̄⊥ = 0 because we have assumed that the actuator magnet’s rotation axis Ω̂a

is set so the field rotation axis Ω̂c is aligned with the lumen axis l̂, and then substituting

(B.16) into (C.1) for τ̄, which produces

‖v̄c‖ = λ1l̂Tf̄‖c(α) + λ2l̂Tτ̄⊥s(α). (C.2)

The optimization with SQP utilizes the quadratic of the average velocity, which can be

written as:

‖v̄c‖2 =
(

λ1

(
l̂Tf̄‖

)
c(α)

)2
+ 2λ1λ2

(
l̂Tf̄‖

) (
l̂Tτ̄⊥

)
s(α)c(α)

+
(

λ2

(
l̂Tτ̄⊥

)
s(α)

)2
. (C.3)

Since neither f̄‖ nor τ̄⊥ is a function of α, the partial derivative of ‖v̄c‖2 with respect to

α is simply:

∂‖v̄c‖2

∂α
= 2λ1λ2

(
l̂Tf̄‖

) (
l̂Tτ̄⊥

) (
c2(α)− s2(α)

)

+ 2s(α)c(α)
[(

λ2l̂Tτ̄⊥
)2
−
(

λ1l̂Tf̄‖
)2]

. (C.4)

To calculate the partial derivative of ‖vc‖ with respect to or, we start by finding the

partial derivative with respect to the position vector pc, because the magnetic force and

torque are written in terms of pc. The partial derivatives of τ̄⊥ from (B.9) and of f̄‖ from

(B.11) with respect to pc:
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∂τ̄⊥

∂pc
= w1Ω̂c

(
Ep̂c +

E− (1− φ)K
4φ(1− φ)

Ω̂T
c p̂cW1Ω̂c

)T
(C.5)

∂f̄‖

∂pc
=

2γ2

π

(
− 5
(
M̄− (m̄ + 4p̂T

c M̄p̂c)I3
) p̂cp̂

T
c

‖pc‖

+
1
‖pc‖

(
W2 −W3 − 4W4

))
(C.6)

where

w1 =
−6γ1√

1− φ‖pc‖π
(C.7)

W1 = I3 − p̂cp̂
T
c (C.8)

W2 = w2W5p̂cw
T
1 + w3(W5 −W6W7) (C.9)

W3 =
3 (K− E)
4φ
√

1− φ
p̂cp̂

T
c ΩcΩT

c W1 +
√

1− φKI3 (C.10)

W4 = pcw
T
2 + w3

(
1−

(
p̂T

c Ωa

)2
)

I3 (C.11)

w2 =
(φ− 2) E + 2 (1− φ)K

2φ2
√

1− φ
(C.12)

w3 =

√
1− φ

φ
(E− (1− φ)K) (C.13)

w1 = −1.5
(

ΩT
c p̂c

)
W1Ωc (C.14)

w2 = −2w3

(
1−

(
p̂T

c Ωa

)2
)

p̂c
‖pc‖

+
w3

‖pc‖2 (C.15)

W5 = I3 − Ω̂aΩ̂T
a (C.16)

W6 = Ωap̂T
c +

(
p̂T

c Ωa
)
I3 (C.17)

W7 =
3W5W8W1√
1 + 3 (ΩT

c p̂c)
2

(C.18)

W8 =
(

p̂T
c Ωc

)
I3 + p̂cΩT

c (C.19)

w3 =
−3w2

2‖pc‖
(

ΩT
c p̂c

)
W1Ωc

(
pT

c pc −
(

pT
c Ωa

)2
)

+

(√
1− φ

φ

)
(E− (1− φ)K)w4 (C.20)

w4 = 2
[

pc −
(

pT
c Ωa

)(
Ωa +

1
‖pc‖

WT
7 pc

)]
(C.21)

M̄ is from (B.12), m̄ is calculated with (B.13), K and E are the complete elliptic integrals

of the first and second kind, which are functions of the scalar φ from (B.10). The partial
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derivative of ‖vc‖2 with respect to pc can then be written as:

∂‖v̄c‖2

∂pc
=

∂w5

∂pc
+

∂w6

∂pc
+

∂w7

∂pc
(C.22)

where

∂w5

∂pc
= 2λ2

1 (c(α))
2
(

l̂Tf‖
)

l̂T
∂f‖

∂pc
(C.23)

∂w6

∂pc
= 2λ1λ2c(α)s(α)

[(
l̂T

∂f‖

∂pc

)(
l̂Tτ⊥

)
(C.24)

+

(
l̂T

∂τ̄⊥

∂pc

)(
l̂Tf‖

) ]
(C.25)

∂w7

∂pc
= 2λ2

2 (s(α))
2
(

l̂Tτ̄⊥
)(

l̂T
∂τ̄⊥

∂pc

)
. (C.26)

The partial derivative of ‖v̄c‖2 with respect to or is calculated using the chain rule:

∂‖v̄c‖2

∂or
=

∂‖v̄c‖2

∂pc

∂pc
∂or

(C.27)

where
∂pc
∂or

= −I3. (C.28)

SQP also requires partial derivatives for the constraints, the first (4.16), can be written

as:

∂(l̂ · vc)

∂or
= l̂T

(
∂vc

∂pc

∂pc
∂or

)
(C.29)

where

∂vc

∂pc
=

∂vc

∂f
∂f

∂pc
+

∂vc

∂τ

∂τ

∂pc
. (C.30)

The pieces of the partial derivative of vc with respect to pc are derived in Appendix D. By

replacing pt with its definition, the partial derivative of the second constraint (4.17) can be

written simply as:

∂(n̂ · pt − pmin)

∂or
=

∂(n̂ · (or − ot)− pmin)

∂or
= n̂T. (C.31)

All constraint derivatives with respect to α are zero.



APPENDIX D

ANALYTIC SOLUTIONS FOR THE PROCESS

MODEL JACOBIAN USED IN THE

EXTENDED KALMAN FILTER

For compactness, throughout this appendix, all vectors should be assumed to be in the

robot’s r frame unless explicitly labeled otherwise. In addition, we will use p = pc and

Q = rQc. The partial derivatives of the quaternion rotation equations in (A.4) and (A.5)

with respect toQ and the vector ν are derived in Appendix A and are denoted here by the

functions Π, Π∗, Υ, and Υ∗.

The Jacobian matrix for the process model function, G(s, u), was derived and is given

by:

G =

[ dGp
dp

dGp
dQ

dGQ
dp

dGQ
dQ

]
(D.1)

where the four submatrices are defined as:

dGp

dp
=

∂Gp

∂vc

(
∂vc

∂f
∂f
∂p

+
∂vc

∂τ

∂τ

∂p

)
+

∂Gp

∂p
(D.2)

dGp

dQ =
∂Gp

∂vc

(
∂vc

∂f
∂f
∂Q +

∂vc

∂τ

∂τ

∂Q +
∂vc

∂Q

)
(D.3)

dGQ
dp

=
∂GQ
∂ωc

(
∂ωc

∂f
∂f
∂p

+
∂ωc

∂τ

∂τ

∂p

)
(D.4)

dGQ
dQ =

∂GQ
∂ωc

(
∂ωc

∂f
∂f
∂Q +

∂ωc

∂τ

∂τ

∂Q +
∂ωc

∂Q

)
+

∂GQ
∂Q . (D.5)

If we rewrite the magnetic torque (4.5) as:

τ =
µ0

4π||p||3 mc × (Bcma) =
µ0

4π||p||3 S[mc]Bcma (D.6)

the partial derivative of τ with respect to Q and p can be written as:

∂τ

∂Q =
µ0

4π||p||3 S[Bcma]
TΠ(cmc,Q) (D.7)
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∂τ

∂p
=

3µ0

4π
S[QcmcQ∗]

((
(pTma)I3 + pmT

a + mapT
)

‖p‖5

−5(pTma)ppT

‖p‖7

) (D.8)

where Bc is from (4.1).

The magnetic force (4.6) can be rewritten as:

f =
3µ0

4π||p||4
(

mapT + pmT
a +

(
pTZma

)
I3

)
mc (D.9)

where Z is defined in (4.7), such that its partial derivative with respect to Q is calculated

as:
∂f
∂Q =

3µ0

4π||p||4
(

map̂T + (mT
a p̂)I3 + p̂mT

a ZT
)

Π(cmc,Q). (D.10)

The derivative of force with respect to p is calculated as:

∂f
∂p

=
γ2

||p||

(
X− 5p̂p̂TX− 5Xp̂p̂T−

5
(

m̂T
c (3p̂p̂T − I3)m̂a

)
p̂p̂T

) (D.11)

where

X = m̂am̂T
c + m̂cm̂T

a +
(

m̂T
c Zm̂a

)
I3. (D.12)

Using the current values of τ and f, the partial derivatives of the forward and angular

velocities are found:

∂ωc

∂τ
= Λ3 (D.13)

∂ωc

∂f
= ΛT

2 (D.14)

∂vc

∂τ
= Λ2 (D.15)

∂vc

∂f
= Λ1 (D.16)

where Λ1, Λ2, and Λ3 are defined in terms of the scalars λ1, λ3, and λ2 and the vector

describing the lumen direction l̂ (see (4.13)).

In our setup, we assume the lumen and the principle axis of the capsule (rx̂c) are

aligned, such that l̂ = rQc
cx̂c

rQ∗c . The partial derivatives of the spatial and angular

velocities with respect to Q can be written as:
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∂vc

∂l̂
= λ1l̂fT + λ1(l̂Tf)I3 + λ2l̂τT + λ2(l̂Tτ)I3 (D.17)

∂vc

∂Q =
∂v
∂l̂

Π(cx̂c,Q) (D.18)

∂ωc

∂l̂
= λ2l̂fT + λ2(l̂Tf)I3 + λ3l̂τT + λ3(l̂Tτ)I3 (D.19)

∂ωc

∂Q =
∂ωc

∂l̂
Π(cx̂c,Q). (D.20)

The remaining partial derivatives for the position update are derived from (4.21):

∂Gp

∂vc
= ∆t I3 (D.21)

∂Gp

∂p
= I3. (D.22)

The following partial derivatives are calculated from the orientation update (4.22).

Q∆ = [q∆ qT
∆]

T refers to the incremental change in orientation that is created using the

capsule’s speed over some time increment ∆t with its rotation vector: k∆ = ∆tωc. Utilizing

(A.14), we compute:

∂GQ
∂ωc

=

[
q0 −qT

q q0I3 − S[q]

]
∂Q∆

∂k∆
∆t (D.23)

∂GQ
∂Q =

[
q∆ −qT

∆
q∆ q∆I3 + S[q∆]

T

]
. (D.24)



APPENDIX E

ANALYTIC SOLUTIONS FOR THE MEASUREMENT

MODEL JACOBIAN USED IN THE

EXTENDED KALMAN FILTER

An explicit representation of the Jacobian matrix for the measurement model, H(s, u),

is given by:

H =
[

∂H
∂p

∂H
∂Q
]

. (E.1)

The measurement model Hi can be rewritten in terms of p and Q:

Hi =
c β̂TaQ∗aiQ∗ (E.2)

where

a =
µ0

4π‖p + rδi‖5 (E.3)

rai =
(

3(p + rδi)(p + rδi)
T − I3‖p + rδi‖2

)
ma (E.4)

and rδi = QcδiQ∗. By setting cai = Q∗raiQ the partial derivative of Hi with respect to wp

is calculated as:

∂Hi

∂p
= cβTcai

∂a
∂p

+ acβT ∂cai

∂p
(E.5)

∂ai

∂p
= 3

(
I3pTma + pmT

a + rδimT
a + rδi

TmaI3

)

− 2(mapT + ma
rδi

T) (E.6)
∂cai

∂p
= Υ∗(Q)∂rai

∂p
(E.7)

∂a
∂p

=

(−5µ0

4π

)
pT + rδi

T

‖p + rδi‖7 . (E.8)

Similarly, the derivative of H with respect to Q is:

∂H
∂Q = cβTcai

∂a
∂Q + acβT ∂cai

dQ (E.9)

∂cai

∂Q = Υ∗(Q)∂rai

∂Q + Π∗(rai,Q) (E.10)
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∂rai

∂Q = 3
((

(pTma)I3 +
rδimT

a + (rδi
Tma)I3 + pmT

a

)

− 2
(

mapT + ma
rδi

T
))

Π(cδi,Q) (E.11)

∂a
∂Q =

∂a
∂p

Π(cδi,Q). (E.12)


