2,288 research outputs found

    Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    Full text link
    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here we show that a high-quality resonance (Q>20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity --- as expressed via the minimum detectable force gradient --- is hardly affected, because of the enhanced quality factor. Via the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up which includes magnetic actuation of the cantilevers and which can be easily implemented in any AFM system that is compatible with an inverted optical microscope.Comment: The following article has been accepted by Journal of Applied Physics. After it is published, it will be found at http://jap.aip.org

    Comparison on experimental and numerical results for helical swimmers inside channels

    Get PDF
    Swimming micro robots are becoming feasible in biomedical applications such as targeted drug delivery, opening clogged arteries and diagnosis owing to recent developments in micro and nano manufacturing technologies. It has been demonstrated at various scales that micro helices with magnetic coating or attached to a magnet can move in fluids with the application of external rotating magnetic fields. The motion of micro swimmers interacting with flow inside channels needs to be well understood especially for medical applications where the motion of micro robots inside arteries and conduits in the body become pertinent. In this work, swimming of helical micro robots with magnetic heads inside tubes is modeled with the resistive force theory (RFT) and validated with experiments conducted in glycerin filled mini glass channels placed in rotational magnetic fields. The time-averaged forward velocities of magnetically driven micro swimmers that are calculated by the RFT model agree very well with experimental results
    • …
    corecore