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Abstract Continuing our previous investigations in ciliary fluid transportation (Isvoranu et al., 2010)  our 
present paper looks into the matter of non-newtonian fluid flow. Naturally, in constant properties fluids 
(newtonian fluids) ciliary transportation is based on a non-symmetric actuation mechanism meaning different 
geometrical configuration of the cilium during the active and passive stroke. Artificial cilia can mimick this 
behaviour through asymmetric magnetic actuation as discused in (Isvoranu et. al., 2008). What happens 
when fluid properties (eg. viscosity) are not constant throughout a beating cycle? Such situation is expected 
to be encountered when dealing with biological fluids like saliva, for example. In the case of a shear-thinning 
fluid, like the above mentioned one, the motion can also become asymetric due to deformation rate 
dependent viscosity that ultimately leads to different time scales of the forward and backward strokes. In the 
present paper we are investigating a 3D flow generated by an array of cilia embedded in a non-newtonian 
fluid whose viscosity is characterized by a power low shear rate dependency. The same magnetic actuation 
mechanism is considered.  
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1. Introduction 
 
 In present, the possibilities to manipulate 
fluids at the micro or nano scales is 
investigated by many researchers. The 
envisaged applications, imposed by future 
high-tech technology, are inkjet printing for 
displays, micro-channel cooling for electronics 
and biomedical applications (controlled drug 
delivery systems, biosensors). Considering the 
various applications, the fluids to be 
manipulated are no longer Newtonian 
(polymer solutions, blood, saliva, urine). 
Knowing that the typical sizes of the micro-
fluid channel widths and heights range from 
several to hundreds of micrometers, the 
manipulation mechanism may be quite 
different: transportation, mixing, sorting, 
deforming, or rupturing. However, we 
emphasize the “designed” by nature 
manipulation that is that due to a covering of 
beating cilia over the external surface of 
micro-organisms (e.g. paramecium, 
pleurobrachia, and opaline). A cilium is 
similar to a small wire or flexible rod (in 
protozoa: typical length 10 mm and diameter 
0.1 mm) attached to the surface. The cilia, 

collectively and correlated move forth and 
back, and in this way generate flow (for 
example, the propulsion speed produced by 
paramecium cilia is in the order of several 
mm/s). The induced flow by the artificial cilia 
has several distinctive particularities 
comparing to the biological counterpart. The 
main dissimilarity is the different way of 
attaching the cilium to the support substrate 
and problem of mimicking the difference 
between cilium’s inner engine behavior during 
the active and passive stroke. 
Initially, the adopted physical flow models 
were based on downscaling of existing flow 
models in regular devices, such as pumps, 
valves, or mixers. Further, the flow models 
take into account the nonnegligible small 
scales effects, such as surface tension, surface 
energy patterning, or electro-osmosis.  
 In the present paper we are investigating a 
3D flow generated by an array of cilia 
embedded in a non-Newtonian fluid whose 
viscosity is characterized by a power low shear 
rate dependency. The actuation mechanism 
considered is magnetic. 
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2. Structural model 
 The cilium is modeled as an inextensible, 
but deformable, cylindrical filament with 
circular cross section of constant radius a. The 
geometry is defined in some fixed Cartesian 
coordinate system( , , )x y z . We assume the 
slenderness / 1a Lε = << , where L is the 
constant length of the cilium. If we assume 
that the cross section remains always planar, 
the deformed geometry can be recovered from 
three sets of data: the position of points lying 
on filament centreline, the twisting and the 
rotation of cross sections passing through these 
points. The points on the filament centreline 
are defined by the position vector ���, �� =�	��, ��, 
��, ��, ���, ��� where s (0 ≤ � ≤ �) 
is its arc-length and t time. We assume 0s =  
for the anchor point and Ls = at the distal end 
point. Lets’ be ���, ��  an arbitrary point 
along the centreline curve and Π��, ��  the 
normal to the centre line plane passing through 
the point ���, ��	 plane. Following (Gueron 
and Levit-Gurevich, 2001) at each point along 
the curve we define an local orthonormal 
coordinate system by the three unit vectors � = ���, �� , � = ���, ��  � = ���, ��  such 
that vector � points in the direction of the 
tangent to the centreline. This Lagrangian 
coordinate system (body-coordinate system 
(Hines and Blum, 1978)) offers the possibility 
of constructing a reliable model for the 
dynamics of an inextensible filament avoiding 
the undesired singularity stemming from 
inextensibility condition associated with 
Serret-Frenet formulation of the former model 
of Gueron and Liron (Gueron and Liron, 
1992). Vector �  can be chosen arbitrarily 
under the condition that for the straight and 
untwisted filament all corresponding vectors 
for 0 ≤ � ≤ � are parallel and point in the 
same direction. The third unit vector �  is 
determined from the requirement that � = � × �. An illustration of this coordinate 
system is provided in Fig. 1. For dynamic 
problems, the cross section defined by (�, �) 
plane may also rotate along ���, �� axis at an 
angular velocity ���, �� = Ω��, �����, ��.  
 The link between fixed and body 
coordinate systems is done by the Euler 

rotation matrices, ����� , �����, �����as 
follows: 

 	
�! = ��������������� "#$%& 
"#$%& = ���������������  	
�!    (1) 

where angles � , �  and �   are three 
successive rotations. 
 

 
 
Figure 1. Body coordinate system of a cylindrical 
filament. 
 
We define '� = '���, ��, '� = '���, �� and '� = '���, ��,	 the infinitesimal changes of 
body coordinates from �  to the ones at � + )� through: 

'� = *�*� , '� = *�*� , '� = *�*� 												�2� 
We note that Xk , Yk and Zk are related to the 
rates of change of unit vectors � = ���, ��, � = ���, ��, � = ���, �� as a function of s: )�)� = '�� − '��, )�)� = '�� − '��, 

)�)� = '�� − '��																			�3�	
The rates of change of unit vectors � =���, �� , � = ���, �� , � = ���, ��  as a 
function of t are denoted as .� = .���, ��, .� = .���, �� and .� = .���, ��. We men-
tion that .���, �� ≠ Ω��, ��. Obviously: *0*� = 1*0*�23456 + 7 × 0,

*0*� = 1*0*�23456 + 8 × 0					�4� 
where subscript body refers to representation of 
arbitrary vector with respect to body 
coordinates system. The time evolution of the 
curve expressed in body coordinates is 
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described by the following set of equations 
(Gueron and Levit-Gurevich, 2001):  ':� = '�.� − ;<< ⋅ �															�5� ':� = −'�.� + ;<< ⋅ �													�6�	':� = .�< + '�;< ⋅ � + '�;< ⋅ �				�7�	.�< =	ΩA − '�;< ⋅ � − '�;< ⋅ �				�8� 
where ; = ;��, ��  is the velocity of the 
filament. For simplicity, we use subscripts 
subscript s to denote differentiation with 
respect to the arc-length s and superscript ˙ to 
denote differentiation with respect to time. The 
above differential system allows to determine '� , '� , '�  and twisting rate .�  when ; 
and Ω are done. The inextensibility condition  � ⋅ ; = 0 yields C�< − '�;� + '�;� = 0												�9� 
Knowing the anchor location ���E, ��  and 
orientation ���E, �� , ���E, �� , ���E, ��  the 
reconstruction of the cilium centreline with 
respect to the fixed coordinate system is 
provided by the following integral 

���, �� = ��0, �� + F ��G, ��)G<
E 			�10� 

Integration of the differential system (3) 
provides the unit vectors necessary in the 
reconstruction process. Rotation angles � = ���, �� , � = ���, ��  and � = ���, �� 
are computed by integrating Eq. (2) with 
appropriate initial conditions. 
 
3. Dynamic model 
 
  The mechanical equilibrium expresses the 
balance of forces and moments acting of each 
individual cilium (Gueron and Liron, 1992; 
Gueron et.al, 1997; Gueron et.al., 1998; 
Gueron and Liron., 1999): I = J<, J = KL,< + M< 												�11� 
unde I = I��, �� este is the viscous forces 
per unit length (drag forces) exerted by the 
surrounding fluid, M = M��, �� is the driving 
engine is represented by the magnetic torque 
exerted on each cilia, J = J��, �� is the shear 
force, KL = KL��, �� is the elastic torque. In 
the local coordinate system Eqs. 11 become:   N� = O�, s − '�O� + '�O� N� = O�, s + '�O� − '�O� N� = O�, s − '�O� + '�O� 

O� = PQ'�, s + �PQ − PR�'�'� + S O� = −PQ'�, s + �PQ − PR�'�'� + T	�12� 
where PQ  and PR  represent cilium elastic 
moduli to bending and twisting and  the 
components of the derivative of the magnetic 
torque are denoted by S�U� and T�U�. S = V�, s + '�V� − '�V� T = −V�, s + '�V� − '�V�									�13� 
The asymptotic relation between drag forces 
and velocity derived by Gueron and Liron 
(Gueron and Levit-Gurevich, 1992) provides 
the link between dynamics and kinematics of 
the cilia 9 pt Times New Roman font. N� = −W�C� + X� N� = −W�C� + X� N� = −W�C� + X�																	�14� 
where X� = W�Y� , X� = W�Y� , X� = W�Y� 
and the drag coefficients are given by 

W� = 8Z[−2 + 4\]�2^/`� 
W� = W� = 8Z[1 + 2\]�2^/`�								�15� [  being the molecular viscosity. For non-

Newtonian fluids, [	 is not longer constant 
and have to be considered as variable in s 
direction, [ = [��� . The vector a =�Y� , Y�, Y�� denotes the velocity field induced 
at �  by far segments of the cilium and 
neighbouring cilia. The components of a are 
integrals of the appropriate fundamental 
solutions of the Stokes equations and are 
expressed by:  

a��E, �� = F bcd4UeLd
f

|<h<i|jk ��, �E, −I�)� 

+F lbmnopL	<6<dLn��, �E, −I�																			�16� 		f
E+ bq4r3eLd	snopL	<6<dLn��, �E, −I`t/4[�u)� 

for any ^  such that ̀ ≪ ^  and ^ ≪ �  (in 
present work we used ^ = 0.1�). The viscous 
torque per unit length exerted on a rotating 
cylinder in Stokes flow can be approximated 
by a linear function of its angular velocity Ω. 
Following (Gueron and Levit-Gurevich, 2001) 
we find  

x	 = PRWy '�,< + zWy 										�17� 
where z = z��, ��  is the active twisting 
moment per unit length and W{ = 4Z[`t is 
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the resistance coefficient. The magnetic 
actuation is produced by a rotating magnetic 
field generated with either longitudinal or 
longitudinal and transversal coils. Harmonic 
excitation of coils is assumed. In the present 
paper the cilium is considered being made of a 
permanently magnetic material with saturation 
magnetization (PMM). The magnetic torque 
per control volume for a constant longitudinal 
saturation magnetization in the body 
coordinate system is simply (Jackson, 1974)  

�)M�3456 = �K<od × |3456�Z`t)�4 			�18� 
 
4. Constitutive relations 
 
Constitutive relations express the stress 
components in terms of the primary unknowns 
(more exactly, in terms of strain or rate of 
strain). In the case of a fluid at rest, the stress 
is determined wholly by the one scalar 
quantity p, the static-fluid pressure, and p in 
turn is specified locally by the equilibrium 
equation of state when the values of the two 
parameters of state (e.g. density and 
temperature) are known. In the case of a fluid 
in relative motion, the connection between the 
stress and the local properties must account for 
all events during the motion of fluid particles 
that contribute to the local stress (Bird et al. 
1987). The constitutive relations are more 
complicated, in two respects: first, the stress 
tensor contains a non-isotropic part as well as 
an isotropic part, and second, the scalar 
quantity p specifying the isotropic part is not 
itself one of the variables of state used in 
equilibrium thermodynamics. The first of these 
two manifestations of the departure from 
equilibrium represents a transport of 
momentum, or internal friction, and is by far 
the more important, in the great majority of 
flow fields (Batchelor , 1967). 
A non-Newtonian fluid is one whose stresses 
are not linear with the rate of strain, but is 
dependent on flow conditions such as flow 
geometry, shear rate, etc. and sometimes even 
on the kinematic history of the fluid element 
under consideration. Such materials (i.e. fluids 
of elaborate molecular structure, and in 
particular for those consisting of long 

molecular chains, and for some emulsions and 
mixtures) may be conveniently grouped into 
three general classes (Astarita et al., 1977,  
Chhabra et. al, 1999): 
1. Fluids for which the rate of shear at any 
point is determined only by the value of the 
shear stress at that point at that instant; these 
fluids are variously known as “time 
independent” or “generalised Newtonian 
fluids”; 
2. Fluids for which the relation between shear 
stress and shear rate depends, in addition, upon 
the duration of shearing and their kinematic 
history; they are called “time-dependent 
fluid”;  
3. Fluids exhibiting characteristics of both 
ideal fluids and elastic solids and showing 
partial elastic recovery, after deformation; 
these are categorized as “visco-elastic fluids”. 
This classification scheme is arbitrary in that 
most real materials often exhibit a combination 
of two or even all three types of non-
Newtonian features. Generally, it is, however, 
possible to identify the dominant non-
Newtonian characteristic and to take this as the 
basis for the subsequent process calculations.  
For non-Newtonian fluids the stresses linear 
dependence of rate of strain cease to be 
accurate at only moderate rates of strain; the 
stress depends on the strain history as well as 
on its instantaneous rate of change. The 
measurable effects of these historical events 
can be quantified, for example, by the Rivlin-
Ericksen strain tensors (Malvern, 1969). In our 
specific case, we chose to simulate the 
behaviour of the cilium in a visco-elastic 
environment like shear-thinning fluid. In this 
case, [ = }~:�h� where ] < 1 and ~:  is the 
second invariant of the strain rate tensor, ~: t = 0.5~:s�~:s�, 	~:s� = �s,� + ��,srepresents the 
so called power law model. There are various 
alternatives of this basic generalization of the 
Newtonian fluids, among which we recall the 
Casson and Quemada models. These last 
models extends the range of aplicability of the 
power-law model and improve its convergence 
properties to the Newtonian limit. Human 
saliva is one typical shear-thinning fluid whose 
molecular viscosity, based on rheological 
measurements, can be fitted to the formula 
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[�~: � = [� + [E − [��1 + ��~: �t�E.� 						�19� 
where [E = 70  Pa·s, [� = 0.001 Pa·s and  � = 100 s (Balthussen et al., 2010). 
 
5. Dimensionless equations 
 
We define the dimensionless quantities: 

O� = OSE , �̅ = �� , X̅ = X�SE , N� = N�SE ,	 
�̅ = ��, '� = '�, P�Q = PQSE�t 

W�̅ = W��t�SE , W�̅ = W��t�SE , Wy̅ = Wy�SE . 
 
where SE  and 1/�  are the force scale and 
time scale, respectively. The last three 
quantities vary liniary with molecular viscosity 
along cilium length. Using equations (12)-(17) 
and (5) the differential equation for O�   is 
obtained. Extracting the components of the 
velocity field from Eq. (11) and inserting them 
into kinematic conditions (4)-(7) we obtain the 
complete set of equations for simulating the 
3D ciliary motion. However, due to restricted 
space and their length, we refer the reader to 
(Isvoranu et al., 2010) in order to catch a 
glimpse of their bulkiness, not to mention the 
extra terms generated by the new viscosity 
variable. From the numerical point of view, 
the centreline is discretized in N+1 equally 
spaced grid points, spatial derivatives are 
replaced by time averaged central finite 
differences while the temporal derivatives by a 
forward in time difference. This approach 
leads to a more stable Cranck-Nicholson 
numerical scheme. Larger time steps are easily 
attainable. However, due to the high 
nonlinearity of the equations the solution 
algorithm must proceed iteratively with two 
inner loops of refinement for the fundamental 
solutions and '� , '� , '�  and .�  and an 
outer loop for viscosity and implicitely for the 
drag coefficients W�̅, W�̅ and Wy̅. 
 
6. Results 
A computer code has been devised in order to 
perform the necessary simulations. All 
external inputs and other parameters range of 

variation have been imposed such that to 
ensure mechanical and geometrical stability. 
Their characteristic values are presented in 
Table 1. 
 
Table 1 

Parameter L A q ρw Μsat 
Value 100 1 10 1000 20 
Unit µm µm µm kg/ 

m3 
kA/m 

 
Simulations were performed with one single 
cilium. The main purpose of either simulation 
was the investigation of the flow pattern, 
vortex structure and the flow rate. The 
magnetic engine is represented by an exterior 
harmonic magnetic field aligned in the x-
direction. The salient features of one cilium 
harmonic 3D motion are illustrated in Figs. 2 
and 3. 
 

 
 

Figure 2. Streamline pattern at �̅ = 0.30. �� = 0.000625 N/m·A, P = 6 ∙ 10� Pa and � = 10 Hz 
 
The rigidity of the cilium (PQ = P ∙ �) affected 
by Young’s elastic modulus (E), the induction 
and the frequency of magnetic field have great 
influence on the movement of the cilium and 
the pattern of streamlines in this special case 
of visco-elastic fluid. Figures 2 and 3 illustrate 
the particular case when �� = 0.000625 
N/m·A (Tesla), P = 6 ∙ 10�  Pa and � = 10 
Hz. We notice two large vortex stuctures 
nearby cilium similar those discovered in the 
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case of  

 
 

Figure 3. Streamline pattern at �̅ = 1.07. �� = 0.000625 N/m·A, P = 6 ∙ 10� Pa and � = 10 Hz 
 

 
 
Figure 4. Cilium position at several instants over a 
cycle beat;�� = 0.0125 N/m·A, P = 3 ∙ 10�  Pa 
and � = 10 Hz - Case 1. 
 
 

 
 
Figure 5. Cilium position at several instants over a 
cycle beat;�� = 0.0125 N/m·A, P = 3 ∙ 10�  Pa 
and � = 25 Hz – Case 2. 
 
Newtonian fluids (Isvoranu et al., 2010). The 
major diference is that the vortices apear more 

frequently almost at each other cilium beat in 
the first stages of the movement. Later on, 
these structures disappear as illustrated in Fig. 
2. Actually, the most important difference 
between cilium behavior in visco-elastic fluid 
as opposed to that in Newtonian fluid is 
represented by the vibrating component 
induced by the forcing magnetic field. In this 
  

 
 

Figure 6. Cilium position at several instants over a 
cycle beat;�� = 0.00125  N/m·A, P = 6.6 ∙ 10� 
Pa and � = 15 Hz – Case 3. 
 

 
 
Figure 7. Cilium position at several instants over a 
cycle beat; �� = 0.00088 N/m·A, P = 6.6 ∙ 10� 
Pa and � = 15 Hz – Case 4. 
 
case, it is apparent an oscillatory movement 
similar to a vibrating chord. Resonant 
characteristics have been observed leading to 
loss of mechanical equilibrium. This can 
explain either the neccesity for extra rigidity or 
diminishing the active magnetic field 
induction. Figures 4-7 show snaphosts of 
cilium deformations during one cycle period 
for several external inputs. We notice the 
obvious influence of external field frecquency  
over cilium displacement in Fig. 4 and 5 while   
in Fig. 6 and 7 we observe the effect of 
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magnetic induction reduction. The augmented 
rigidity (Fig. 4-5) leads to a behavior similar to 
that found in the case of Newtonian fluid. The 
cilium oscillates in the fundamental mode. 
Lowering rigidity must be accompanied by 
lowering the active magnetic torque. Hence, 
shear rate diminishes and molecular viscosity 
increases over the cilium length. New behavior 
emerges and oscillates in higher modes like 
those illustrated in Fig. 6 and 7. Another 
interesting aspect is the mass flow rate 
transported by ciliary beat. The global net 
mass flow rate for the four cases analyzed is 
depicted in Table 2. 
 
Table 2 

Case }:  [µg/s] 
1 2.76 
2 5.73 
3 8.26 
4 4.48 

 
It seems that a good compromise between 
actuating force, frequency and rigidity is the 
key to high mass flow rate. The interesting 
thing is that considering the same parameters 
as in case 3 for a Newtonian fluid with [� = 0.001 Pa·s, the global mass flow rate is 
of only 4.16·10-3  µg/s, hence cilia beat in 
visco-elastic environment is much more 
productive.  
 
7. Conclusion 
 
The 3D motion of one cilium generates  
vortex dominated flow in certain 
circumstances. In the case of one-dimensional 
magnetic actuation the vortices are generally 
normal to the plane of the actuation. There is 
either a threshold of the magnetic torque that 
ensures mechanical stability or a specific 
rigidity. A significant energy saving is 
available in the case of visco-elastic 
environments. 
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