5 research outputs found

    A Review on AI Chip Design

    Get PDF
    In recent years, artificial intelligence (AI) technologies have been widely used in many business areas. With the attention and investment of scientific researchers and research companies around the world, artificial intelligence technologies have proven their irreplaceable value in traditional speech recognition, image recognition, search/recommendation engines, and other areas. At the same time, however, the computational effort for artificial intelligence technologies is increasing dramatically, posing a huge challenge to the computing power of hardware devices. First, in this paper, we describe the direction of AI chip technology development, including the technical shortcomings of existing AI chips. So, we present the directions of AI chip development in recent years

    USING MACHINE LEARNING TO OPTIMIZE PREDICTIVE MODELS USED FOR BIG DATA ANALYTICS IN VARIOUS SPORTS EVENTS

    Get PDF
    In today’s world, data is growing in huge volume and type day by day. Historical data can hence be leveraged to predict the likelihood of the events which are to occur in the future. This process of using statistical or any other form of data to predict future outcomes is commonly termed as predictive modelling. Predictive modelling is becoming more and more important and is trending because of several reasons. But mainly, it enables businesses or individual users to gain accurate insights and allows to decide suitable actions for a profitable outcome. Machine learning techniques are generally used in order to build these predictive models. Examples of machine learning models ranges from time-series-based regression models which can be used for predicting volume of airline related traffic and linear regression-based models which can be used for predicting fuel efficiency. There are many domains which can gain competitive advantage by using predictive modelling with machine learning. Few of these domains include, but are not limited to, banking and financial services, retail, insurance, fraud detection, stock market analysis, sentimental analysis etc. In this research project, predictive analysis is used for the sports domain. It’s an upcoming domain where machine learning can help make better predictions. There are numerous sports events happening around the globe every day and the data gathered from these events can very well be used for predicting as well as improving the future events. In this project, machine learning with statistics would be used to perform quantitative and predictive analysis of dataset related to soccer. Comparisons of these models to see how effectively the models are is also presented. Also, few big data tools and techniques are used in order to optimize these predictive models and increase their accuracy to over 90%

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations
    corecore