25,374 research outputs found

    Machine Learning Quantum Systems with Magnetic p-bits

    Full text link
    The slowing down of Moore's Law has led to a crisis as the computing workloads of Artificial Intelligence (AI) algorithms continue skyrocketing. There is an urgent need for scalable and energy-efficient hardware catering to the unique requirements of AI algorithms and applications. In this environment, probabilistic computing with p-bits emerged as a scalable, domain-specific, and energy-efficient computing paradigm, particularly useful for probabilistic applications and algorithms. In particular, spintronic devices such as stochastic magnetic tunnel junctions (sMTJ) show great promise in designing integrated p-computers. Here, we examine how a scalable probabilistic computer with such magnetic p-bits can be useful for an emerging field combining machine learning and quantum physics

    A Projective Simulation Scheme for Partially-Observable Multi-Agent Systems

    Full text link
    We introduce a kind of partial observability to the projective simulation (PS) learning method. It is done by adding a belief projection operator and an observability parameter to the original framework of the efficiency of the PS model. I provide theoretical formulations, network representations, and situated scenarios derived from the invasion toy problem as a starting point for some multi-agent PS models.Comment: 28 pages, 21 figure

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201
    corecore