2,269,214 research outputs found
The scientific evaluation of music content analysis systems: Valid empirical foundations for future real-world impact
We discuss the problem of music content analysis within the formal framework of experimental design
Machine Learning for Software Engineering: Models, Methods, and Applications
Machine Learning (ML) is the discipline that studies methods for automatically inferring models from data. Machine learning has been successfully applied in many areas of software engineering ranging from behaviour extraction, to testing, to bug fixing. Many more applications are yet be defined. However, a better understanding of ML methods, their assumptions and guarantees would help software engineers adopt and identify the appropriate methods for their desired applications. We argue that this choice can be guided by the models one seeks to infer. In this technical briefing, we review and reflect on the applications of ML for software engineering organised according to the models they produce and the methods they use. We introduce the principles of ML, give an overview of some key methods, and present examples of areas of software engineering benefiting from ML. We also discuss the open challenges for reaching the full potential of ML for software engineering and how ML can benefit from software engineering methods
ICE: Enabling Non-Experts to Build Models Interactively for Large-Scale Lopsided Problems
Quick interaction between a human teacher and a learning machine presents
numerous benefits and challenges when working with web-scale data. The human
teacher guides the machine towards accomplishing the task of interest. The
learning machine leverages big data to find examples that maximize the training
value of its interaction with the teacher. When the teacher is restricted to
labeling examples selected by the machine, this problem is an instance of
active learning. When the teacher can provide additional information to the
machine (e.g., suggestions on what examples or predictive features should be
used) as the learning task progresses, then the problem becomes one of
interactive learning.
To accommodate the two-way communication channel needed for efficient
interactive learning, the teacher and the machine need an environment that
supports an interaction language. The machine can access, process, and
summarize more examples than the teacher can see in a lifetime. Based on the
machine's output, the teacher can revise the definition of the task or make it
more precise. Both the teacher and the machine continuously learn and benefit
from the interaction.
We have built a platform to (1) produce valuable and deployable models and
(2) support research on both the machine learning and user interface challenges
of the interactive learning problem. The platform relies on a dedicated,
low-latency, distributed, in-memory architecture that allows us to construct
web-scale learning machines with quick interaction speed. The purpose of this
paper is to describe this architecture and demonstrate how it supports our
research efforts. Preliminary results are presented as illustrations of the
architecture but are not the primary focus of the paper
Quantum machine learning: a classical perspective
Recently, increased computational power and data availability, as well as
algorithmic advances, have led machine learning techniques to impressive
results in regression, classification, data-generation and reinforcement
learning tasks. Despite these successes, the proximity to the physical limits
of chip fabrication alongside the increasing size of datasets are motivating a
growing number of researchers to explore the possibility of harnessing the
power of quantum computation to speed-up classical machine learning algorithms.
Here we review the literature in quantum machine learning and discuss
perspectives for a mixed readership of classical machine learning and quantum
computation experts. Particular emphasis will be placed on clarifying the
limitations of quantum algorithms, how they compare with their best classical
counterparts and why quantum resources are expected to provide advantages for
learning problems. Learning in the presence of noise and certain
computationally hard problems in machine learning are identified as promising
directions for the field. Practical questions, like how to upload classical
data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde
Is it ethical to avoid error analysis?
Machine learning algorithms tend to create more accurate models with the
availability of large datasets. In some cases, highly accurate models can hide
the presence of bias in the data. There are several studies published that
tackle the development of discriminatory-aware machine learning algorithms. We
center on the further evaluation of machine learning models by doing error
analysis, to understand under what conditions the model is not working as
expected. We focus on the ethical implications of avoiding error analysis, from
a falsification of results and discrimination perspective. Finally, we show
different ways to approach error analysis in non-interpretable machine learning
algorithms such as deep learning.Comment: Presented as a poster at the 2017 Workshop on Fairness,
Accountability, and Transparency in Machine Learning (FAT/ML 2017
Deep Learning for Forecasting Stock Returns in the Cross-Section
Many studies have been undertaken by using machine learning techniques,
including neural networks, to predict stock returns. Recently, a method known
as deep learning, which achieves high performance mainly in image recognition
and speech recognition, has attracted attention in the machine learning field.
This paper implements deep learning to predict one-month-ahead stock returns in
the cross-section in the Japanese stock market and investigates the performance
of the method. Our results show that deep neural networks generally outperform
shallow neural networks, and the best networks also outperform representative
machine learning models. These results indicate that deep learning shows
promise as a skillful machine learning method to predict stock returns in the
cross-section.Comment: 12 pages, 2 figures, 8 tables, accepted at PAKDD 201
- …
