13 research outputs found

    Machine and component residual life estimation through the application of neural networks

    Get PDF
    Analysis of reliability data plays an important role in the maintenance decision making process. The accurate estimation of residual life in components and systems can be a great asset when planning the preventive replacement of components on machines. Artificial intelligence is a field that has rapidly developed over the last twenty years and practical applications have been found in many diverse areas. The use of such methods in the maintenance field have however not yet been fully explored. With the common availability of condition monitoring data, another dimension has been added to the analysis of reliability data. Neural networks allow for explanatory variables to be incorporated into the analysis process. This is expected to improve the quality of predictions when compared to the results achieved through the use of methods that rely solely on failure time data. Neural networks can therefore be seen as an alternative to the various regression models, such as the proportional hazards model, which also incorporate such covariates into the analysis. For the purpose of investigating their applicability to the problem of predicting the residual life of machines and components, neural networks were trained and tested with the data of two different reliability related datasets. The first dataset represents the renewal case where repair leads to complete restoration of the system. A typical maintenance situation was simulated in the laboratory by subjecting a series of similar test pieces to different loading conditions. Measurements were taken at regular intervals during testing with a number of sensors which provided an indication of the test piece’s condition at the time of measurement. The dataset was split into a training set and a test set and a number of neural network variations were trained using the first set. The networks’ ability to generalize was then tested by presenting the data from the test set to each of these networks. The second dataset contained data collected from a group of pumps working in a coal mining environment. This dataset therefore represented an example of the situation encountered with a repaired system. The performance of different neural network variations was subsequently compared through the use of cross-validation. It was proved that in most cases the use of condition monitoring data as network inputs improved the accuracy of the neural networks’ predictions. The average prediction error of the various neural networks under comparison varied between 431 and 841 seconds on the renewal dataset, where test pieces had a characteristic life of 8971 seconds. When optimized the multi-layer perceptron neural networks trained with the Levenberg-Marquardt algorithm and the general regression neural network produced a sum of squares error within 11.1% of each other for the data of the repaired system. This result emphasizes the importance of adjusting parameters, network architecture and training targets for optimal performance The advantage of using neural networks for predicting residual life was clearly illustrated when comparing their performance to the results achieved through the use of the traditional statistical methods. The potential of using neural networks for residual life prediction was therefore illustrated in both cases.Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2007.Mechanical and Aeronautical EngineeringMEngunrestricte

    Artificial neural networks for vibration based inverse parametric identifications: A review

    Get PDF
    Vibration behavior of any solid structure reveals certain dynamic characteristics and property parameters of that structure. Inverse problems dealing with vibration response utilize the response signals to find out input factors and/or certain structural properties. Due to certain drawbacks of traditional solutions to inverse problems, ANNs have gained a major popularity in this field. This paper reviews some earlier researches where ANNs were applied to solve different vibration-based inverse parametric identification problems. The adoption of different ANN algorithms, input-output schemes and required signal processing were denoted in considerable detail. In addition, a number of issues have been reported, including the factors that affect ANNs’ prediction, as well as the advantage and disadvantage of ANN approaches with respect to general inverse methods Based on the critical analysis, suggestions to potential researchers have also been provided for future scopes

    Techniques and Emerging Trends for State of the Art Equipment Maintenance Systems - A Bibliometric Analysis

    Get PDF
    The increasing interconnection of machines in industrial production on one hand, and the improved capabilities to store, retrieve, and analyze large amounts of data on the other, offer promising perspectives for maintaining production machines. Recently, predictive maintenance has gained increasing attention in the context of equipment maintenance systems. As opposed to other approaches, predictive maintenance relies on machine behavior models, which offer several advantages. In this highly interdisciplinary field, there is a lack of a literature review of relevant research fields and realization techniques. To obtain a comprehensive overview on the state of the art, large data sets of relevant literature need to be considered and, best case, be automatically partitioned into relevant research fields. A proper methodology to obtain such an overview is the bibliometric analysis method. In the presented work, we apply a bibliometric analysis to the field of equipment maintenance systems. To be more precise, we analyzed clusters of identified literature with the goal to obtain deeper insight into the related research fields. Moreover, cluster metrics reveal the importance of a single paper and an investigation of the temporal cluster development indicates the evolution of research topics. In this context, we introduce a new measure to compare results from different time periods in an appropriate way. In turn, among others, this simplifies the analysis of topics, with a vast amount of subtopics. Altogether, the obtained results particularly provide a comprehensive overview of established techniques and emerging trends for equipment maintenance systems

    Review of Health Prognostics and Condition Monitoring of Electronic Components

    Get PDF
    To meet the specifications of low cost, highly reliable electronic devices, fault diagnosis techniques play an essential role. It is vital to find flaws at an early stage in design, components, material, or manufacturing during the initial phase. This review paper attempts to summarize past development and recent advances in the areas about green manufacturing, maintenance, remaining useful life (RUL) prediction, and like. The current state of the art in reliability research for electronic components, mainly includes failure mechanisms, condition monitoring, and residual lifetime evaluation is explored. A critical analysis of reliability studies to identify their relative merits and usefulness of the outcome of these studies' vis-a-vis green manufacturing is presented. The wide array of statistical, empirical, and intelligent tools and techniques used in the literature are then identified and mapped. Finally, the findings are summarized, and the central research gap is highlighted

    Optimisation of co-culture fermentation of lactobacillus casei and propionibacterium jensenii in rice bran extract

    Get PDF
    Co-culture fermentation is a fermentation process involving two defined microorganisms growing together in the same culture. A co-culture of lactic acid-producing bacteria (LAB) and propionic acid-producing bacteria (PAB) is beneficial in producing direct-fed microbial (DFM) products. The synergistic activity between LAB and PAB in co-culture fermentation can improve the survival of LAB and the growth of PAB. On this basis, the objectives of this study are two-fold. Firstly, the optimisation of co-culture fermentation involving Lactobacillus casei and Propionibacterium jensenii in the agricultural waste extract. Secondly, the development of an artificial neural network (ANN) predictive model for predicting the cell biomass concentration and the co-culture-specific growth rate. In the preliminary phase, two different substrates, namely rice bran and banana peel, were used in this study. This step was conducted to select the suitable carbon source for L. casei to grow and produce lactic acid for P. jensenii consumption. From the observation, rice bran was found more suitable as a carbon source and fermentation medium. Next, the co-culture optimisation of L. casei and P. jensenii fermentation was conducted using the one-factor-at-a-time approach. The fermentations were optimised for rice bran at concentration of 5% to 25% w/v; incubation temperature (30? to 42?); inoculation ratio (1:1 to 1:10 % v/v) and the initial pH (5.0 to 7.0). The optimum fermentation condition was obtained at 20% w/v rice bran concentration, incubated at 35? with an inoculation ratio of 1:4 % v/v and initial pH of 6.5. The optimum growth (2.74 g dry cell weight/L) was recorded after 96 hours of incubation. The highest viable cell counts for L. casei and P. jensenii were 9.10 log CFU/mL and 9.42 log CFU/mL, respectively. The optimum specific growth rate, ” obtained, was 0.41 h-1. The growth of L. casei and P. jensenii was compared to its monoculture fermentation, and it was found that the co-culture did not affect the growth of L. casei but helped maintain its survival. Moreover, P. jensenii gained benefits in the co-culture system, as its growth improved compared to during its monoculture. The ANN predictive model was developed using the multilayer perceptron and trained using the Levenberg-Marquardt training algorithm. Five input parameters, incubation time (h), the concentration of total reducing sugar (g/L), pH culture, incubation temperature (?) and inoculation ratio (% v/v), were used to train the network for the prediction of cell biomass concentration (g/L) and the co-culture specific growth rate, ” (h-1). The model has a low mean square error and high regression coefficient (R2) for the training and testing set, indicating the model is fit to predict the cell biomass produced and its specific growth rate during the co-culture of L. casei and P. jensenii. The structure obtained for ANN predictive model consist of five inputs, eight hidden nodes and two outputs, 5-8-2. The optimum predicted cell biomass concentration and the specific growth rate, ”, were 2.24 g dry cell weight/L and 0.51 h-1, respectively. In conclusion, this work provides a strategy to produce multispecies DFM through co-culture fermentation using rice bran and presented the first predictive ANN model to predict the cell biomass concentration and the co-culture-specific growth rate of L. casei and P. jensenii

    Prognostic-based Life Extension Methodology with Application to Power Generation Systems

    Get PDF
    Practicable life extension of engineering systems would be a remarkable application of prognostics. This research proposes a framework for prognostic-base life extension. This research investigates the use of prognostic data to mobilize the potential residual life. The obstacles in performing life extension include: lack of knowledge, lack of tools, lack of data, and lack of time. This research primarily considers using the acoustic emission (AE) technology for quick-response diagnostic. To be specific, an important feature of AE data was statistically modeled to provide quick, robust and intuitive diagnostic capability. The proposed model was successful to detect the out of control situation when the data of faulty bearing was applied. This research also highlights the importance of self-healing materials. One main component of the proposed life extension framework is the trend analysis module. This module analyzes the pattern of the time-ordered degradation measures. The trend analysis is helpful not only for early fault detection but also to track the improvement in the degradation rate. This research considered trend analysis methods for the prognostic parameters, degradation waveform and multivariate data. In this respect, graphical methods was found appropriate for trend detection of signal features. Hilbert Huang Transform was applied to analyze the trends in waveforms. For multivariate data, it was realized that PCA is able to indicate the trends in the data if accompanied by proper data processing. In addition, two algorithms are introduced to address non-monotonic trends. It seems, both algorithms have the potential to treat the non-monotonicity in degradation data. Although considerable research has been devoted to developing prognostics algorithms, rather less attention has been paid to post-prognostic issues such as maintenance decision making. A multi-objective optimization model is presented for a power generation unit. This model proves the ability of prognostic models to balance between power generation and life extension. In this research, the confronting objective functions were defined as maximizing profit and maximizing service life. The decision variables include the shaft speed and duration of maintenance actions. The results of the optimization models showed clearly that maximizing the service life requires lower shaft speed and longer maintenance time

    Prognostic Algorithms for Condition Monitoring and Remaining Useful Life Estimation

    Get PDF
    To enable the benets of a truly condition-based maintenance philosophy to be realised, robust, accurate and reliable algorithms, which provide maintenance personnel with the necessary information to make informed maintenance decisions, will be key. This thesis focuses on the development of such algorithms, with a focus on semiconductor manufacturing and wind turbines. An introduction to condition-based maintenance is presented which reviews dierent types of maintenance philosophies and describes the potential benets which a condition- based maintenance philosophy will deliver to operators of critical plant and machinery. The issues and challenges involved in developing condition-based maintenance solutions are discussed and a review of previous approaches and techniques in fault diagnostics and prognostics is presented. The development of a condition monitoring system for dry vacuum pumps used in semi- conductor manufacturing is presented. A notable feature is that upstream process mea- surements from the wafer processing chamber were incorporated in the development of a solution. In general, semiconductor manufacturers do not make such information avail- able and this study identies the benets of information sharing in the development of condition monitoring solutions, within the semiconductor manufacturing domain. The developed solution provides maintenance personnel with the ability to identify, quantify, track and predict the remaining useful life of pumps suering from degradation caused by pumping large volumes of corrosive uorine gas. A comprehensive condition monitoring solution for thermal abatement systems is also presented. As part of this work, a multiple model particle ltering algorithm for prog- nostics is developed and tested. The capabilities of the proposed prognostic solution for addressing the uncertainty challenges in predicting the remaining useful life of abatement systems, subject to uncertain future operating loads and conditions, is demonstrated. Finally, a condition monitoring algorithm for the main bearing on large utility scale wind turbines is developed. The developed solution exploits data collected by onboard supervisory control and data acquisition (SCADA) systems in wind turbines. As a result, the developed solution can be integrated into existing monitoring systems, at no additional cost. The potential for the application of multiple model particle ltering algorithm to wind turbine prognostics is also demonstrated
    corecore