289,333 research outputs found

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Generalizable semi-supervised learning method to estimate mass from sparsely annotated images

    Get PDF
    Mass flow estimation is of great importance to several industries, and it can be quite challenging to obtain accurate estimates due to limitation in expense or general infeasibility. In the context of agricultural applications, yield monitoring is a key component to precision agriculture and mass flow is the critical factor to measure. Measuring mass flow allows for field productivity analysis, cost minimization, and adjustments to machine efficiency. Methods such as volume or force-impact have been used to measure mass flow; however, these methods are limited in application and accuracy. In this work, we use deep learning to develop and test a vision system that can accurately estimate the mass of sugarcane while running in real-time on a sugarcane harvester during operation. The deep learning algorithm that is used to estimate mass flow is trained using very sparsely annotated images (semi-supervised) using only final load weights (aggregated weights over a certain period of time). The deep neural network (DNN) succeeds in capturing the mass of sugarcane accurately and surpasses older volumetric-based methods, despite highly varying lighting and material colors in the images. The deep neural network is initially trained to predict mass on laboratory data (bamboo) and then transfer learning is utilized to apply the same methods to estimate mass of sugarcane. Using a vision system with a relatively lightweight deep neural network we are able to estimate mass of bamboo with an average error of 4.5% and 5.9% for a select season of sugarcane.Comment: 22 pages, 21 figures, Computers and Electronics in Agriculture. arXiv admin note: text overlap with arXiv:1908.0438

    Log-Euclidean Bag of Words for Human Action Recognition

    Full text link
    Representing videos by densely extracted local space-time features has recently become a popular approach for analysing actions. In this paper, we tackle the problem of categorising human actions by devising Bag of Words (BoW) models based on covariance matrices of spatio-temporal features, with the features formed from histograms of optical flow. Since covariance matrices form a special type of Riemannian manifold, the space of Symmetric Positive Definite (SPD) matrices, non-Euclidean geometry should be taken into account while discriminating between covariance matrices. To this end, we propose to embed SPD manifolds to Euclidean spaces via a diffeomorphism and extend the BoW approach to its Riemannian version. The proposed BoW approach takes into account the manifold geometry of SPD matrices during the generation of the codebook and histograms. Experiments on challenging human action datasets show that the proposed method obtains notable improvements in discrimination accuracy, in comparison to several state-of-the-art methods

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    On The Effect of Hyperedge Weights On Hypergraph Learning

    Full text link
    Hypergraph is a powerful representation in several computer vision, machine learning and pattern recognition problems. In the last decade, many researchers have been keen to develop different hypergraph models. In contrast, no much attention has been paid to the design of hyperedge weights. However, many studies on pairwise graphs show that the choice of edge weight can significantly influence the performances of such graph algorithms. We argue that this also applies to hypegraphs. In this paper, we empirically discuss the influence of hyperedge weight on hypegraph learning via proposing three novel hyperedge weights from the perspectives of geometry, multivariate statistical analysis and linear regression. Extensive experiments on ORL, COIL20, JAFFE, Sheffield, Scene15 and Caltech256 databases verify our hypothesis. Similar to graph learning, several representative hyperedge weighting schemes can be concluded by our experimental studies. Moreover, the experiments also demonstrate that the combinations of such weighting schemes and conventional hypergraph models can get very promising classification and clustering performances in comparison with some recent state-of-the-art algorithms
    • …
    corecore