726 research outputs found

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    When Internet of Things meets Metaverse: Convergence of Physical and Cyber Worlds

    Get PDF
    In recent years, the Internet of Things (IoT) is studied in the context of the Metaverse to provide users immersive cyber-virtual experiences in mixed reality environments. This survey introduces six typical IoT applications in the Metaverse, including collaborative healthcare, education, smart city, entertainment, real estate, and socialization. In the IoT-inspired Metaverse, we also comprehensively survey four pillar technologies that enable augmented reality (AR) and virtual reality (VR), namely, responsible artificial intelligence (AI), high-speed data communications, cost-effective mobile edge computing (MEC), and digital twins. According to the physical-world demands, we outline the current industrial efforts and seven key requirements for building the IoT-inspired Metaverse: immersion, variety, economy, civility, interactivity, authenticity, and independence. In addition, this survey describes the open issues in the IoT-inspired Metaverse, which need to be addressed to eventually achieve the convergence of physical and cyber worlds.info:eu-repo/semantics/publishedVersio

    Intégration de la blockchain à l'Internet des objets

    Get PDF
    L'Internet des objets (IdO) est en train de transformer l'industrie traditionnelle en une industrie intelligente où les décisions sont prises en fonction des données. L'IdO interconnecte de nombreux objets (ou dispositifs) qui effectuent des tâches complexes (e.g., la collecte de données, l'optimisation des services, la transmission de données). Toutefois, les caractéristiques intrinsèques de l'IdO entraînent plusieurs problèmes, tels que la décentralisation, une faible interopérabilité, des problèmes de confidentialité et des failles de sécurité. Avec l'évolution attendue de l'IdO dans les années à venir, il est nécessaire d'assurer la confiance dans cette énorme source d'informations entrantes. La blockchain est apparue comme une technologie clé pour relever les défis de l'IdO. En raison de ses caractéristiques saillantes telles que la décentralisation, l'immuabilité, la sécurité et l'auditabilité, la blockchain a été proposée pour établir la confiance dans plusieurs applications, y compris l'IdO. L'intégration de la blockchain a l'IdO ouvre la porte à de nouvelles possibilités qui améliorent intrinsèquement la fiabilité, la réputation, et la transparence pour toutes les parties concernées, tout en permettant la sécurité. Cependant, les blockchains classiques sont coûteuses en calcul, ont une évolutivité limitée, et nécessitent une bande passante élevée, ce qui les rend inadaptées aux environnements IdO à ressources limitées. L'objectif principal de cette thèse est d'utiliser la blockchain comme un outil clé pour améliorer l'IdO. Pour atteindre notre objectif, nous relevons les défis de la fiabilité des données et de la sécurité de l'IdO en utilisant la blockchain ainsi que de nouvelles technologies émergentes, notamment l'intelligence artificielle (IA). Dans la première partie de cette thèse, nous concevons une blockchain qui garantit la fiabilité des données, adaptée à l'IdO. Tout d'abord, nous proposons une architecture blockchain légère qui réalise la décentralisation en formant un réseau superposé où les dispositifs à ressources élevées gèrent conjointement la blockchain. Ensuite, nous présentons un algorithme de consensus léger qui réduit la puissance de calcul, la capacité de stockage, et la latence de la blockchain. Dans la deuxième partie de cette thèse, nous concevons un cadre sécurisé pour l'IdO tirant parti de la blockchain. Le nombre croissant d'attaques sur les réseaux IdO, et leurs graves effets, rendent nécessaire la création d'un IdO avec une sécurité plus sophistiquée. Par conséquent, nous tirons parti des modèles IA pour fournir une intelligence intégrée dans les dispositifs et les réseaux IdO afin de prédire et d'identifier les menaces et les vulnérabilités de sécurité. Nous proposons un système de détection d'intrusion par IA qui peut détecter les comportements malveillants et contribuer à renforcer la sécurité de l'IdO basé sur la blockchain. Ensuite, nous concevons un mécanisme de confiance distribué basé sur des contrats intelligents de blockchain pour inciter les dispositifs IdO à se comporter de manière fiable. Les systèmes IdO existants basés sur la blockchain souffrent d'une bande passante de communication et d’une évolutivité limitée. Par conséquent, dans la troisième partie de cette thèse, nous proposons un apprentissage machine évolutif basé sur la blockchain pour l'IdO. Tout d'abord, nous proposons un cadre IA multi-tâches qui exploite la blockchain pour permettre l'apprentissage parallèle de modèles. Ensuite, nous concevons une technique de partitionnement de la blockchain pour améliorer l'évolutivité de la blockchain. Enfin, nous proposons un algorithme d'ordonnancement des dispositifs pour optimiser l'utilisation des ressources, en particulier la bande passante de communication.Abstract : The Internet of Things (IoT) is reshaping the incumbent industry into a smart industry featured with data-driven decision making. The IoT interconnects many objects (or devices) that perform complex tasks (e.g., data collection, service optimization, data transmission). However, intrinsic features of IoT result in several challenges, such as decentralization, poor interoperability, privacy issues, and security vulnerabilities. With the expected evolution of IoT in the coming years, there is a need to ensure trust in this huge source of incoming information. Blockchain has emerged as a key technology to address the challenges of IoT. Due to its salient features such as decentralization, immutability, security, and auditability, blockchain has been proposed to establish trust in several applications, including IoT. The integration of IoT and blockchain opens the door for new possibilities that inherently improve trustworthiness, reputation, and transparency for all involved parties, while enabling security. However, conventional blockchains are computationally expensive, have limited scalability, and incur significant bandwidth, making them unsuitable for resource-constrained IoT environments. The main objective of this thesis is to leverage blockchain as a key enabler to improve the IoT. Toward our objective, we address the challenges of data reliability and IoT security using the blockchain and new emerging technologies, including machine learning (ML). In the first part of this thesis, we design a blockchain that guarantees data reliability, suitable for IoT. First, we propose a lightweight blockchain architecture that achieves decentralization by forming an overlay network where high-resource devices jointly manage the blockchain. Then, we present a lightweight consensus algorithm that reduces blockchain computational power, storage capability, and latency. In the second part of this thesis, we design a secure framework for IoT leveraging blockchain. The increasing number of attacks on IoT networks, and their serious effects, make it necessary to create an IoT with more sophisticated security. Therefore, we leverage ML models to provide embedded intelligence in the IoT devices and networks to predict and identify security threats and vulnerabilities. We propose a ML intrusion detection system that can detect malicious behaviors and help further bolster the blockchain-based IoT’s security. Then, we design a distributed trust mechanism based on blockchain smart contracts to incite IoT devices to behave reliably. Existing blockchain-based IoT systems suffer from limited communication bandwidth and scalability. Therefore, in the third part of this thesis, we propose a scalable blockchain-based ML for IoT. First, we propose a multi-task ML framework that leverages the blockchain to enable parallel model learning. Then, we design a blockchain partitioning technique to improve the blockchain scalability. Finally, we propose a device scheduling algorithm to optimize resource utilization, in particular communication bandwidth

    Split Federated Learning for 6G Enabled-Networks: Requirements, Challenges and Future Directions

    Full text link
    Sixth-generation (6G) networks anticipate intelligently supporting a wide range of smart services and innovative applications. Such a context urges a heavy usage of Machine Learning (ML) techniques, particularly Deep Learning (DL), to foster innovation and ease the deployment of intelligent network functions/operations, which are able to fulfill the various requirements of the envisioned 6G services. Specifically, collaborative ML/DL consists of deploying a set of distributed agents that collaboratively train learning models without sharing their data, thus improving data privacy and reducing the time/communication overhead. This work provides a comprehensive study on how collaborative learning can be effectively deployed over 6G wireless networks. In particular, our study focuses on Split Federated Learning (SFL), a technique recently emerged promising better performance compared with existing collaborative learning approaches. We first provide an overview of three emerging collaborative learning paradigms, including federated learning, split learning, and split federated learning, as well as of 6G networks along with their main vision and timeline of key developments. We then highlight the need for split federated learning towards the upcoming 6G networks in every aspect, including 6G technologies (e.g., intelligent physical layer, intelligent edge computing, zero-touch network management, intelligent resource management) and 6G use cases (e.g., smart grid 2.0, Industry 5.0, connected and autonomous systems). Furthermore, we review existing datasets along with frameworks that can help in implementing SFL for 6G networks. We finally identify key technical challenges, open issues, and future research directions related to SFL-enabled 6G networks
    • …
    corecore