1,032 research outputs found

    Membership Privacy for Machine Learning Models Through Knowledge Transfer

    Full text link
    Large capacity machine learning (ML) models are prone to membership inference attacks (MIAs), which aim to infer whether the target sample is a member of the target model's training dataset. The serious privacy concerns due to the membership inference have motivated multiple defenses against MIAs, e.g., differential privacy and adversarial regularization. Unfortunately, these defenses produce ML models with unacceptably low classification performances. Our work proposes a new defense, called distillation for membership privacy (DMP), against MIAs that preserves the utility of the resulting models significantly better than prior defenses. DMP leverages knowledge distillation to train ML models with membership privacy. We provide a novel criterion to tune the data used for knowledge transfer in order to amplify the membership privacy of DMP. Our extensive evaluation shows that DMP provides significantly better tradeoffs between membership privacy and classification accuracies compared to state-of-the-art MIA defenses. For instance, DMP achieves ~100% accuracy improvement over adversarial regularization for DenseNet trained on CIFAR100, for similar membership privacy (measured using MIA risk): when the MIA risk is 53.7%, adversarially regularized DenseNet is 33.6% accurate, while DMP-trained DenseNet is 65.3% accurate.Comment: To Appear in the 35th AAAI Conference on Artificial Intelligence, 202

    Privacy Risks of Securing Machine Learning Models against Adversarial Examples

    Full text link
    The arms race between attacks and defenses for machine learning models has come to a forefront in recent years, in both the security community and the privacy community. However, one big limitation of previous research is that the security domain and the privacy domain have typically been considered separately. It is thus unclear whether the defense methods in one domain will have any unexpected impact on the other domain. In this paper, we take a step towards resolving this limitation by combining the two domains. In particular, we measure the success of membership inference attacks against six state-of-the-art defense methods that mitigate the risk of adversarial examples (i.e., evasion attacks). Membership inference attacks determine whether or not an individual data record has been part of a model's training set. The accuracy of such attacks reflects the information leakage of training algorithms about individual members of the training set. Adversarial defense methods against adversarial examples influence the model's decision boundaries such that model predictions remain unchanged for a small area around each input. However, this objective is optimized on training data. Thus, individual data records in the training set have a significant influence on robust models. This makes the models more vulnerable to inference attacks. To perform the membership inference attacks, we leverage the existing inference methods that exploit model predictions. We also propose two new inference methods that exploit structural properties of robust models on adversarially perturbed data. Our experimental evaluation demonstrates that compared with the natural training (undefended) approach, adversarial defense methods can indeed increase the target model's risk against membership inference attacks.Comment: ACM CCS 2019, code is available at https://github.com/inspire-group/privacy-vs-robustnes

    Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning

    Full text link
    Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge. We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing state-of-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.Comment: 2019 IEEE Symposium on Security and Privacy (SP

    Machine Learning Models that Remember Too Much

    Full text link
    Machine learning (ML) is becoming a commodity. Numerous ML frameworks and services are available to data holders who are not ML experts but want to train predictive models on their data. It is important that ML models trained on sensitive inputs (e.g., personal images or documents) not leak too much information about the training data. We consider a malicious ML provider who supplies model-training code to the data holder, does not observe the training, but then obtains white- or black-box access to the resulting model. In this setting, we design and implement practical algorithms, some of them very similar to standard ML techniques such as regularization and data augmentation, that "memorize" information about the training dataset in the model yet the model is as accurate and predictive as a conventionally trained model. We then explain how the adversary can extract memorized information from the model. We evaluate our techniques on standard ML tasks for image classification (CIFAR10), face recognition (LFW and FaceScrub), and text analysis (20 Newsgroups and IMDB). In all cases, we show how our algorithms create models that have high predictive power yet allow accurate extraction of subsets of their training data
    corecore