35,364 research outputs found

    Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs

    Full text link
    Neural operators are a type of deep architecture that learns to solve (i.e. learns the nonlinear solution operator of) partial differential equations (PDEs). The current state of the art for these models does not provide explicit uncertainty quantification. This is arguably even more of a problem for this kind of tasks than elsewhere in machine learning, because the dynamical systems typically described by PDEs often exhibit subtle, multiscale structure that makes errors hard to spot by humans. In this work, we first provide a mathematically detailed Bayesian formulation of the ''shallow'' (linear) version of neural operators in the formalism of Gaussian processes. We then extend this analytic treatment to general deep neural operators using approximate methods from Bayesian deep learning. We extend previous results on neural operators by providing them with uncertainty quantification. As a result, our approach is able to identify cases, and provide structured uncertainty estimates, where the neural operator fails to predict well

    AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs

    Full text link
    Stochastic differential equations are an important modeling class in many disciplines. Consequently, there exist many methods relying on various discretization and numerical integration schemes. In this paper, we propose a novel, probabilistic model for estimating the drift and diffusion given noisy observations of the underlying stochastic system. Using state-of-the-art adversarial and moment matching inference techniques, we avoid the discretization schemes of classical approaches. This leads to significant improvements in parameter accuracy and robustness given random initial guesses. On four established benchmark systems, we compare the performance of our algorithms to state-of-the-art solutions based on extended Kalman filtering and Gaussian processes.Comment: Published at the Thirty-sixth International Conference on Machine Learning (ICML 2019
    • …
    corecore