2 research outputs found

    Zero-day vulnerability prevention with recursive feature elimination and ensemble learning

    Get PDF
    This study focuses on spotting and stopping new types of online threats by improving the UGRansome dataset to detect unusual activity in real-time. By blending different machine learning methods, like naïve tree-based ensemble learning and recursive feature elimination (RFE), the research achieves a high accuracy rate of 97%. Naïve Bayes (NB) stands out as the most effective classifier. The suggested setup, combining gradient boosting (GB) and random forest (RF) with NB, effectively identifies and prevents unknown vulnerabilities in computer systems. UGRansome successfully blocks over 100 kilobits per second (kbps) of harmful online traffic by using details pinpointed by the RFE method, specifically uniform resource locators (URLs). This outperforms existing Intrusion Detection System (IDS) datasets. It\u27s particularly good at stopping secure shell attacks, proving the dataset\u27s usefulness in making networks safer. This research marks significant progress in detecting intrusions. The NB model excels in accuracy, precision, and remembering patterns, especially in identifying new threats. Moreover, the suggested naïve tree-based ensemble model shows outstanding accuracy, standing out as the best-performing technique among all models studied. Applying the UGRansome properties-based rule noticeably changes how traffic is sorted, decreasing unknown traffic while increasing unclassified traffic, which requires more investigation
    corecore